
Computational Brain & Behavior
https://doi.org/10.1007/s42113-025-00239-7

RESEARCH

Overt Visual Attention in the Formation of Preference Between
Complex Lottery Options

Xinhao Fan1,2 · Jacob Elsey1 · Aurelien Wyngaard1,3 · Aaron L. Sampson1 · You-Ping Yang1,8 · Erik E. Emeric1 ·
Moshe Glickman5,6 ·Marius Usher4 · Dino Levy7 · Veit Stuphorn1 · Ernst Niebur1

Accepted: 6 March 2025
© Society for Mathematical Psychology 2025

Abstract
Our ultimate goal is to understand mechanisms of decision-making, a fundamental cognitive function. Models of multi-
attribute decision-making vary on whether preference formation is based on within-option or within-attribute processing. We
carry out a combined empirical and computational study using lottery options with varying task complexities. We monitor
eye gaze during the decision formation to determine which decision-relevant information participants attend and when. We
compare models of different levels of complexity in their ability to account for the choices made by individual participants.
We find that two models outperform all others. The first is the two-layer leaky-competing accumulator based on prospect
theory (LCA-PT), which predicts human choices on simple tasks better than any other model. For complex tasks a new
model based on operations research performs best, with both its performance as well as that of the second-ranked LCA-PT
model significantly exceeding that of all other models. Both models use the sequence of observed eye movements for each
participant to capture the allocation of attention to specific options and attributes during the decision process, but make
different assumptions about the effect of attention on decision-making. Our results suggest that, when faced with complex
choice problems, people form preferences primarily based on attention-guided pairwise, within-attribute value comparisons.
Suboptimal decisions are at the basis of many societal ills, from drug abuse to eating disorders to displaying inappropriately
violent behavior. Understanding their underlying mechanisms has the potential of developing remedies for these maladaptive
behaviors.

Keywords Decision making · Multi-attribute decision-making · Selective attention · Preference formation ·
Computational modeling

Introduction

Making decision between complex choice options (which are
characterized by multiple attributes or dimensions) is one of
the most difficult tasks that we frequently encounter in our
daily life. This is often due to the problem of integrating
multiple pieces of information which present us with var-
ious trade-offs—one option may be better with regards to
one dimension (or attribute), e.g., quality of a product, while
another with regards to another attribute, e.g., its cost. Risky
choice is a particular type of multi-attribute choice which has
been subject to extensive research. It presents participants
with choices between lottery options and is the focus of our
study. A number of normative theories were developed to
prescribe good choices in multi-attribute decisions (Keeney
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et al., 1993), which are often described as compensatory. For
risky choice, in particular, the normative theory is Subjective
Expected Utility (Savage, 1954). These normative theories,
and even more recent descriptive theories of risky choice,
such as Prospect Theory (Kahneman&Tversky, 1979; Tver-
sky & Kahneman, 1992), compute an overall value for each
option in the form of a weighted average, with high val-
ues in one attribute compensating for low values in others.1

Empirical research in decision-making, however, indicates
marked violations of the normative theory. Those violations
have indicated a variety of context effects (Huber et al., 1982;
Simonson, 1989; Busemeyer et al., 2019; Berkowitsch et al.,

1 The choice is assumed to stochastically select the option with the
highest subjective expected value. In the Prospect Theory, this value
is being estimated using subjective values and subjective probabilities;
however, the theory preserves the idea that value is integrated across all
possible outcomes.
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2014) in which the relative preference between two choice
options depends on options which are not chosen, violating
basic principles of choice rationality (Von Neumann &Mor-
genstern, 1947).

To dealwith these violations, and also to face the challenge
that the normative theory requires processing resources that
exceed the working memory capacities of humans (under
normal, unaided, conditions), a set of heuristic models have
been proposed inwhich the formation of preferences does not
involve the computation of an overall value for each option
(Tversky, 1969, 1972; Gigerenzer & Goldstein, 1996).
One important distinction between multi-attribute decision-
making models is whether processing occurs mainly within-
option orwithin-attribute (Fellows, 2006; Payne et al., 1993).
While the normative theory which estimates an overall value
for each option requires within-option processing, heuristic
models involvewithin-attribute processing.As shownbyFel-
lows (2006), lesions in the ventromedial prefrontal cortex can
result in changes between these types of decision strategies.

From the information processing point of view, an advan-
tage of within-attribute processing is that choice options are
compared along a single attribute at a time, rather than having
to integrate them into options (within-options processing).
Alternatives are chosen or eliminated based on such compar-
isons (Tversky, 1969, 1972; Gigerenzer & Goldstein, 1996).
This saves on processing resources as decisions can pro-
ceed based on partial information. Research in which task
complexity was manipulated has shown that with increas-
ing task complexity, participants are more likely to rely
on non-compensatory, within-attribute decision strategies
(Payne et al., 1993). Much of this research has relied on
a (computer-) mouse-driven attribute sampling paradigm,
commonly referred to as Mouselab, a term we also adopt
due to its wide use. In this paradigm, choice options are pre-
sented on a hidden matrix which requires the participants
to reveal information by sequential clicks of a computer
mouse (Johnson et al., 1989). More recently, Glöckner and
Betsch (2008) have argued that theMouselab design/method
induces an unnatural environment that increases the reliance
on heuristic (non-compensatory) strategies. Lohse and John-
son (1996) compared behavior in theMouselab environment
with behavior based on eye tracking and reported that par-
ticipants using the former tend to have more systematic
information acquisition behavior than in the latter. This
may be due to the requirement for deliberate, more time-
consuming and sequential actions (mouse movements and
clicks) in Mouselab than is necessary while making natural
eye movements. Using free viewing, Glöckner and Betsch
(2008) have shown that most subjects deploy compensatory
rapid strategies in probabilistic inferences task (which is a
type of multi-attribute decision with binary cues). Bruso-
vansky et al. (2018) have reached the same conclusion in
classical multi-attribute decision tasks. We also point out

that in natural free viewing (without themasking protocol we
employ in our study, see below), theremay be some degree of
parallel processing mediated by the information gathered in
peripheral vision. To be clear, in our paradigm, all peripheral
information is available, with the only exception being that
which is covered by the masks obscuring the values of non-
fixated attributes. Future studies may be needed to examine
if the effects we obtain here generalize to free viewing.

Several models of decision-making have an attentional
component in which options are selected, e.g., Busemeyer
and Townsend (1993); Roe et al. (2001); Johnson and Buse-
meyer (2010); Birnbaum (2008). However, the attentional
state of the decider is typically considered as a hidden (inter-
nal) stochastic process, in which there are random jumps
between possible attentional states.Using sophisticated com-
putational models, Trueblood et al. (2022) showed in a recent
study that context effects including preference reversals (and
their absence) can be explained by stochastic changes of
attention.

It is possible, however, to obtain access to this internal
process by monitoring eye gaze, i.e., overt attention. While
a large literature exists about measuring the effects of covert
attention (review: Carrasco (2011)), a simpler procedure is
to replace covert attention by overt attention. It has been
known for more than a century that covert attention can be
dissociated from overt attention (von Helmholtz, 1896), but
the latter is often a good approximation of the former. In the
realm of visual perception, it has been shown that predictions
of computational models of covert attention (Niebur&Koch,
1996; Itti et al., 1998) correlate strongly with eye movements
(Parkhurst et al., 2002).

Following previouswork in the decision-making literature
(Russo, 1978; Russo & Dosher, 1983; Glöckner & Herbold,
2011; Stewart et al., 2016; Krajbich et al., 2010; Glickman
et al., 2019), we also measure eye movements to determine
the attention state, as described below.

In a recent study from our labs (Glickman et al., 2019), we
have examined the behavioral mechanisms that humans use
by monitoring their gaze while they made choices between
simple lotteries of the form (win amount x with proba-
bility p). We then examined a number of within-option
and within-attribute choice models, which were constrained
by the observed scan path (gaze location over time) while
participants collected information about their choices. Con-
sistent with results by Glöckner and Betsch (2008, 2012)
and Brusovansky et al. (2018), we found a predominance of
within-option processing, subject to some inter-individual
variability. Since the choice task, however, only involved
the simplest choice options (two options with two attributes
each), it is possible that this conclusion is due to the low
task complexity. To examine the dependency of the decision
mechanism (in particular, the use ofwithin-option vs. within-
attribute processing) on task complexity, in this study, we
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carried out a novel experiment in which we examine multi-
attribute decisions while the task complexity is manipulated
in a within-participant design.While the options in the previ-
ously used simple task were defined by a total of four pieces
of information (two options with two attributes each), this
number is substantially increased to 16 in the complex task
(four options with four attributes each). We then implement
15 computational models designed to predict choices made
by participants by optimizing model parameters based on
behavioral variables of each participant, including their eye
movements. The relative performance ofmodels is compared
using several metrics in order to infer the impact of task com-
plexity on the decision and attentional process.

Aims of This Study

The aims of this work are to study the influence of attention
on choice in multi-attribute decision-making. Given limi-
tations of cognitive processing, the role of attention may
increase with complexity of the decision space which moti-
vates us to vary task complexity. Our approach is to combine
an empirical study of behavioral choice by healthy human
volunteers with computational modeling. Both methods are
very powerful, and importantly, they complement each other:
The empirical results constrain the models, and the mod-
els provide quantitative predictions of choice behavior and
an understanding of the underlying mechanisms. Using the
models, we aim to better understand the type of process
(within-attribute/alternative) that takes place at each level of
complexity and to understand the impact of the eye gaze
information in accounting for the choice data. Moreover,
using the best fit model parameters, we can understand the
algorithm that is being deployed (e.g., the role of memory).

There are two main parts to this combined empirical and
computational study:

(i) Collecting empirical results from a new experimental
paradigm. It varies from most previous work in two ways:
(1) we study situations of varying complexity to address
the question of whether potential shifts in choice strat-
egy (between within-attribute and within-option searches)
depend on complexity, and (2) we monitor the state of overt
attention (scanpaths) during the decision process. This allows
us to constrain models with this information and determine
whether they can explain behavior more successfully than
models that are not privy to this information.

(ii) The effect of several variables on choice behavior in
situations of different complexity is quantitatively assessed in
a substantial number (N=15) of computational models. The
main emphasis is to study the effect of selective attention on
choice in these models which are selected from three fam-
ilies: (1) descriptive models (i.e., not process models), (2)
process models without attention, and (3) process models
with attention. We study the impact of inter-trial interactions

on choice in the latent variable model which is part of the
second family.

To anticipate our results, we find that while for simple
choices the within-option models dominate, the situation
reverses at high complexity choices.

Methods

Experimental Methods

We study the behavior of human participants in a multi-
attribute decision task. Each option is defined by multiple
attributes. We investigate two cases that differ substantially
in complexity. In the simpler case (2×2), two options are pre-
sented with two attributes each, while in the more complex
situation (4 × 4), there are four options with four attributes
each. Obviously, for an exhaustive evaluation of all aspects,
a minimum of four attributes needs to be assessed in the first
task, while the more complex one requires 16. Options are
presented on a computer screen, and importantly, the val-
ues of all attributes are by default covered by opaque circles
whose colors indicate the type of attribute but not its value.
The value is “hidden” under the opaque disks and only shown
when the participant actively fixates it. This is accomplished
by the use of an eye tracker that continuously monitors the
eye position of the head-fixed observer and permits attribute
value unmasking within a few tens of milliseconds (frame
rate 60/s), making the switch barely noticeable. Disk col-
ors were consistent for all experiments: yellow for amount
to win, blue for probability to win, red for amount to lose,
and green for the delay until feedback becomes available, see
Fig. 1A. The two latter attributes were only used for the 4×4
task.

The options for each choice pairing were determined by
systematically sampling one of five magnitudes for each
attribute type. “Dominated” trials were cases in which all
attributes of one option were superior to those belonging to
other options (2 × 2 task: 60% of trials, 4 × 4 task: 20% of
trials). While performance on dominated trials allows us to
confirm that participants understand the task and to assess
their state of vigilance, our main interest is to understand
the choices humans make in non-trivial trials, in which each
option is better in one attribute than all other options. A com-
promise between attributes is then required that depends on
the individual preferences of the participants. In such “non-
dominated” trials (2× 2 task: 40% of trials, 4× 4 task: 80%
of trials), each option can be characterized by the attribute
type in which it is best. Thus, in the 2 × 2 task, we can
distinguish between options with the higher amount to win
(“Win+” option) and options with the higher probability to
win (“Prob+” option). In the 4 × 4 task, in addition to these
option types, there is an option with the lowest for amount to
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Fig. 1 Task design. A Choice menu layout and attribute types. Left:
Examples of two-option, two-attribute (2 × 2) configurations. Right:
four-option, four-attribute (4 × 4) configurations. B Task flow for one
2 × 2 trial. After fixating the center of the screen, participants are pre-
sented with the stimulus array. Symbols are masked by colored circles,
see text. A mask is removed, and the underlying symbol revealed when
the participant fixates it (dashed circles; dashed lines are saccades). Par-
ticipants gather information about the options until they choose one of
them by a button press. After the choice is made, the chosen option is
displayed for 1 s, with all its attributes visible. Then, the amount of the
gain or loss, if any, is displayed, and the next trial starts. C Attribute
fixation types. Left, within-option: Saccades (orange arrows) from one

attribute type to another within the same option. Right, within-attribute:
Saccades (purple arrows) within the same attribute type across different
options. D Example attribute sampling strategies. Overlaid black lines
are eye tracks of one participant each in one trial. Top: The filtering
sampling strategy began with within-attribute saccades to the partici-
pant’s attribute of preferred interest (probability to win), followed by
within-option saccades in the option containing the superior magnitude
of this attribute. Bottom: The exhaustive sampling strategy was com-
prised primarily of sequential within-option saccades to each option.
Fixation patterns were typically spatial, i.e., inspecting options left to
right or top to bottom

lose (“Loss+” option) and an option with the shortest delay
until feedback (“Delay+” option). In the 4× 4 task, we used
a Latin square design to ensure each option contained one
attribute that was 1st, one that was 2nd, 3rd, and 4th ranked
(Fig. 2B). Four of the five possible attribute magnitudes were
used on a given trial (Fig. 2C). Probabilitymagnitudes ranged
between 10 and 90%; therefore, no option resulted in a cer-
tain outcome. Figure 2A shows examples of dominated and
non-dominated attribute pairings in the 2 × 2 task.

Figure 1A shows the stimulus configurations used in the
experiment. The task was a free-viewing paradigm. Partici-
pants could collect all information they desired by looking
selectively at those attributes they were interested in at a
given point in time, as many times as they desired, until they
indicated the choice of their preferred option by pressing the
associated key on a keyboard. Figure 1B shows an illustra-

tion of all phases of one trial, starting when the participant
directed their gaze at a fixation spot, then at a series of loca-
tions representing the 2 attributes of the available 2 options
in this particular trial, and terminating with the selection of
one of the options by pressing a key.

In both the 2× 2 and 4× 4 experiment, participants were
informed that the outcomes of 10% of randomly selected tri-
als would be paid out in real money to incentivize them to
maximize their earnings. This conversion of nominal rewards
to actual monetary rewards happened after all trials were
completed. While performing the task, participants were not
informed whether a given outcome was included in the pay
out or not. Paymentwas in a lump sum at the end of the exper-
iment, without providing information about which outcomes
contributed to the computation of that sum. If earnings were
negative after all trials were completed in the 4 × 4 experi-
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Fig. 2 Stimulus design. A In the
2 × 2 experiment, options were
drawn from a 5x5 dimensional
grid. Red: Example dominated
choice pairing. Blue: Example
of non-dominated choice
pairing. B Example of
non-dominated choice menu in
the 4 × 4 experiment. Each
light-gray bar represents one
option and the colored circles its
attributes. A Latin square design
was used to ensure that each
option was uniquely best,
second-best, third-best, and
fourth-best in a particular
attribute type; ranks are
indicated by the colors (see text)
in the circles of each attribute. C
All attribute magnitudes used in
the 4 × 4 experiment

ment, i.e., if a participant made a net loss, they were adjusted
to zero. For details on experimental methods, see Supple-
mental Section S1.

Computational Methods

Our goal is to understand the decision mechanism in multi-
attribute decision tasks of varying complexity by developing
quantitative models of the preference formation process. We
consider 15 specific models, subdivided into three fami-
lies, that embody a range of different functional mechanisms
underlying decision-making. For more details about all mod-
els, see Supplementary Section S3. Detailed mathematical
equations are provided in Supplementary Section S4. Mod-
els are fitted to the data of each participant to find the model
parameters that provide the best account for their choices.
Accordingly, all model parameters are determined separately
for each participant by maximizing the likelihood that the
model predicts this participant’s choices made in the two
experimental tasks described earlier.

Models Based on Choice Information Only

The first family of models we consider, described in Sec-
tion S3.1, consists of models whose behavior is determined
entirely by the choice values describing the options available
in each trial. For these models, it is assumed that the spe-
cific combination of attributes of each option can be directly
transformed into a value estimate for this option.The simplest
model is maximizing the expected value (EV ) of collected
rewards (amounts). Not all humans can, orwant to,maximize
this quantity. Instead, they may maximize a subjective value
(SV ) which is specific to each observer. A simple way to
compute such a value is the sum of weighted attribute values

for a given option; we call this the additive rule (AR). Alter-
natively, an SV can be computed as a nonlinear combination
of attribute values. This approach is taken in prospect theory
(PT). In this report, SV always refers to the subjective value
computed from prospect theory, as defined in Section S3.1.

Models in this family assume that all available informa-
tion about the attributes is used for decision-making, and
these models do not take into account the dynamic processes
during the decision process. In contrast, in process models,
discussed in the following sections, during each trial, some
functional process transforms information about attributes
into choice preferences for the available options. Assump-
tions about the nature of the underlying process distinguish
the models.

Process Models Without Attention

The threemodels in this family are described in Section S3.2.
In the latent variable (LV) model, we investigate the influ-
ence of inter-trial interactions on choice. That is, we consider
that behavior may be influenced by the responses in previous
trials. This is represented in the formal model by a number of
internal latent variables related to the reward history that con-
tribute to the computation of the subjective value, resulting
in dynamic, history-dependent changes in behavior.

The other two models are related to two attention-based
models that we summarize in the following “Process Models
with Attention” section. These two models do not compute
an explicit value function for individual options; instead,
they rank the options by comparing their attributes. The
first is the decision by sampling (DbS) model (Stewart,
2009) in which the decision is based on a series of binary
comparisons between attributes. Eventually, the option is
chosen that has the highest number of favorable comparisons.
The second model is the Preference Ranking Organization
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Method for Enrichment Evaluations (PROMETHEE) (Brans
& Vincke, 1985), an algorithm developed in Management
Science/Operations Research. It likewise compiles results of
comparisons of pairwise attribute values in a systematic way
to arrive at a choice between options.

Process Models with Attention

Finally, in Section S3.3, we introduce models in which atten-
tion has a specific functional role in decision-making. These
models explicitly take into account (overt) attentional influ-
ences, i.e., eye movement data. First, in two versions of
a Bayesian approach, we assume that participants perform
Bayesian inference based on the sequence of fixations to
optimize either EV (the BI-EV model) or SV (the BI-SV
model). In another approach, the attention-modulated drift-
diffusion (aDDM) (Krajbich & Rangel, 2011) model uses
evidence accumulation at each fixation. In the Leaky Com-
peting Accumulator (LCA) model (Usher & McClelland,
2001, 2004), integration of value occurs by attentional selec-
tion of attributes in a lossy process. The algorithm then
assigns values to each available option and finally selects the
highest value. Following Glickman et al. (2019), we assign
option values using prospect theory, which includes simpler
value-assignment methods, like EV and EU, as special cases.
We call this model LCA-PT.

As indicated earlier, we extended three existing models.
For each of them, the major modification is to replace the
hidden stochastic attentional process with the observed one,
something that is possible in our experimental paradigm but
difficult or impossible in most earlier work. For the first of
these models, decision by sampling, we assumed that the
binary comparisons that in the originalmodel (Stewart, 2009)
occur randomly (or exhaustively, as in our implementation
of that model, see S3.2.2) are in fact controlled by attention,
resulting in the attention-modulated DbS model or aDbS
model. The second model is decision field theory, which
assumes in its original form (Roe et al., 2001) that attention
switches stochastically between attributes. We introduce two
modified versions in which stochastic switching of attention
is replaced by the observed changes of attention for each par-
ticipant to either option values (attention-controlled decision
field, the aDFT model) or attribute values (attribute-specific
attentional decision field theory, the aaDFT model) in each
trial. The third modified model is PROMETHEE, where in
our version we take into account the sequence of informa-
tion selection determined by eye movements. In addition, we
also addmemory leaks to arrive at the attention andmemory-
modulated PROMETHEE model or AMP model.

Model Recovery and Parameter Recovery

We tested if the models we consider can be recovered from
choice and gaze data of the type produced in our experi-

ment. We generated synthetic data for each of the models we
are considering for a population of “simulated participants”
(SPs), see Supplementary Sections S8 and S9 on procedural
details. SPs were presented with the choice problems pre-
sented to our participants and with their gaze patterns. The
model generates a response to these inputs, for each choice
trial, that corresponded to our synthetic data. We then fitted
the synthetic data with all the choice models and selected the
best one based on their AIC scores2

The recovery matrices in Fig. 3 show on the ordinate the
fraction of synthetic data generated byModel y that is recov-
ered asModel x on the abscissae. Diagonal terms correspond
to correct recoveries. Please see Supplementary Section S9
for details.

Aswe see in Fig. 3, most models show a reasonable recov-
ery. One exception is the PROMETHEE model which is
confused with the DbS model in both tasks and, in addition,
with the AR model in the 4 × 4 task.

In addition, we carried out a parameter recovery exercise.
For this aim, we generate new sets of synthetic data, but
for each SP, we only fitted with the generating model. We
then plotted the correlation between the generating and the
recoveredparameters. The results shown inTable 3 in the sup-
plementary material indicate reasonable parameter recovery.
See Section S8 for details.

Results

Human Behavior DuringMulti-Attribute
Decision-Making with Known Attentional State

The majority of eye movements made were either within-
option or within-attribute saccades (Fig. 1C). Participants
generally followed one of two attribute sampling strategies
that we call filtering and exhaustive, respectively (Fig. 1D).
The filtering sampling strategy began with within-attribute
saccades to the participant’s preferred attribute of interest,
followed by within-option saccades in the option contain-
ing the superior magnitude of the attribute of interest. In
the 4 × 4 experiment, the majority of participants using this
strategy would perform at least two within-attribute sweeps
followed by a within-option inspection before their choice.
The exhaustive sampling strategy was comprised primarily
of sequential within-option saccades to each option. In this
strategy, fixation patterns were typically spatial, inspecting
options left to right or top to bottom. For additional details
of the experimental paradigm and sampling strategy classi-
fication criteria, see Methods.

2 Similar results were obtained using the negative log-likelihood and
prediction accuracy measures which were used in Table 2.
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Fig. 3 Confusion matrices for
the 2 × 2 task (top) and the
4 × 4 task (bottom)
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We applied a permutation test to each participant’s fix-
ations to determine whether they used either of these
strategies. First, we aligned all fixations to the first unique
within-option inspection.Next,we determinedwhich option-
type classification best described the first within-option
inspection. Option types could be classified by their supe-
rior attribute type, second-best attribute type, expected value,
variance, or spatial location (left to right or top to bottom).
We repeated this procedure for all additional unique within-
option inspections to the remaining options. We compared
the overall proportions of the classified option types to a
null distribution for each unique within-option inspected.
For each participant, the null distributions were determined
by shuffling fixations within each trial and recording the
largest proportion of the resulting classified option type. This
procedure was repeated 1000 times. Filtering classification
required each unique within-option inspection to be best
classified by the preceding within-attribute fixations (e.g.,
within-attribute fixations to the probability attribute prior
to inspecting the option containing the superior probability
magnitude). Exhaustive classification required each unique
within-option inspection to be spatially ordered. In total,
13/34 (38%) and 17/21 (81%) participant sampling strategies
were classified as filtering in the 2×2 and 4×4 experiments,
respectively. 21/34 (62%) and 4/21 (19%) participant sam-
pling strategies were classified as exhaustive in the 2×2 and
4 × 4 experiments, respectively.

Participants significantly preferred theProb+option above
all others in the 2 × 2 (p < 0.001) and 4 × 4 (p <

0.001, paired t-test) experiments (Fig. 4A, B; see Section S2
for details). Thus, most participants were risk-averse and
weighed the “probability to win” attribute stronger than any
other in estimating the value of an option. The next most
important attribute was “amount to win” (amount+ option
chosen), while the “amount to lose” (Loss+; only in the 4×4
experiment) and “delay to feedback” (Delay+, only in the
4 × 4 experiment) attributes influenced choice much less.
These choice preferenceswere consistent, irrespective of task
complexity. When options were ranked by their expected
value (EV1 > EV2 > EV3 > EV4), participants signifi-
cantly preferred the option with the superior EV over all
others (p < 0.001, paired t-test) with the exception of EV3
vs. EV4 in the 4 × 4 task (Fig. 4C, D). EV was defined as
EV = x · p in the 2 × 2 task, and

EV = x · p + l · (1 − p)

1 + k · d (1)

in the 4 × 4 task (see Section S3.1 for further details). We
use hyperbolic discounting for the delay variable because
it is commonly encountered in human behavior. Last, we
ranked options by their risk or variance of outcome VAR.

Variance was defined as V AR = x2 p(1 − p) in the 2 × 2
task, and V AR = (x − l)2 p(1 − p) in the 4 × 4 task.
Options were ranked by their variance (Var1 > Var2 > Var3
> Var4). In the 2 × 2 experiment, participants significantly
preferred the option with the lowest variance (p < 0.001,
paired t-test). In the 4 × 4 experiment, participants signif-
icantly preferred the options with three largest VAR values
over the Var4 option (p < 0.05, paired t-test), with most
participants preferring the intermediate VAR options (Var2,
Var3). These results imply that participants were not averse
to choosing high variance options, but that outcome vari-
ance was not heavily weighted during the decision-making
process in general.

Task complexity is reflected in the different numbers of
fixations before choice and in reaction times, both of which
increase substantially from the simple to the complex task
(Table 1). An increase in the number of fixations during
information sampling from the simple to the complex case
is expected because the available information increases from
four items (attributes) to 16. This increase is, however, not
linear: we find that the number of fixations/item increases
from 7.1 fixations/4 items = 1.775 fixations/item to 18.3 fix-
ations/16 items = 1.1 fixations/item. This sublinear relation
is consistent with our observation that in the simpler case,
nearly all available information was sampled before a choice
was made: on average, 94.5% of attributes are fixated at least
once before choice in the 2×2 task; see Fig. 5A). In contrast,
in the more complex case, a substantially smaller fraction of
the available information was sampled before choice (4 × 4
task: on average, 58% of attributes are fixated at least once
before choice). Thus, in the more complex case, a substantial
amount of available information was ignored before a choice
was made. This is remarkable because no time limit was set
for sampling and the participants indeed spent considerably
longer time inspecting the choice menu in the more complex
task.

We found that, furthermore, the attributes and options that
were inspected and, conversely, were ignored are not ran-
domly distributed. The participants most often inspected the
“probability to win” attribute (85% across all four options)
and least often the “delay to outcome” attribute (30% across
all four options). Likewise, the participants most often
inspected attributes belonging to the Prob+ option (on aver-
age 72%). Attributes belonging to the other three options
were inspected less often (Win+: 57%; Loss+: 50%; Delay+:
51%). We surmise that this preference for inspecting certain
attributes and options reflects the relative weight of these
attributes in determining value and the likelihood that a par-
ticular option will be chosen.

The fact that not all information is used to influence a deci-
sion and that the pattern of sampled information is correlated
with the choice preferences of the participants suggests that
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Fig. 4 Choice frequency of
each option type averaged over
all participants. Win+ (yellow),
Prob+ (blue), Loss+ (red),
Delay+ (green). A 2× 2 trials, B
4× 4 trials. Option types defined
by expected value (EV). C 2 × 2
trials, D 4 × 4 trials. Option
types defined by risk or variance
of outcome (Var). E 2 × 2 trials,
F 4 × 4 trials. Significance:
∗ : p < .05; ∗∗ : p < .01; ∗∗∗ :
p < .001; < ∗ ∗ ∗ : p < .0001,
paired t-test

models of decision-making can become more accurate in
taking the sequence and content of the sampled information
into account. This seems to be more important with increas-
ing complexity of the decision task set, but even in the simple

Table 1 Mean number of fixations and mean reaction times (RTs) for
tasks of different complexity. Only data from non-dominated trials are
included

Experiment # of fixations RT [s]

2opt-2att (2x2) 7.1 (SD=1.8) 3.0 (SD=1.0)

4opt-4att (4x4) 18.3 (SD=6.5) 12.1 (SD=3.8)

2 × 2 task set, where all information is sampled, this order
could influence the decision process.

Predicting Choice Behavior from Eye Fixations

There is a growing body of work supporting the idea that
attentional mechanisms play a causal role in preference
development and choice. It was found (Shimojo et al., 2003;
Krajbich et al., 2010; Krajbich & Rangel, 2011) that gaze
time and frequency correlate with the probability of choos-
ing a given option by eye position as an analog of attention.
To examine whether the influence of gaze on choice in our
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Fig. 5 Population mean percentage of information sampled for each
option/attribute type. Percentage represents the overall proportion of
trials where an attribute type (rows) within an option type (columns)
was sampled. A 2 × 2 trials, B 4 × 4 trials. A Kolmogorov-Smirnov
test was used to determine if the distribution of population information

sampling frequencies for a single attribute type within an option type
was significantly greater than the distribution of population informa-
tion sampling frequencies for all attribute types within all option types.
*: p < .05; ∗∗ : p < .01; ∗ ∗ ∗ : p < .001; ∗ ∗ ∗∗ : p < .0001,
Kolmogorov-Smirnov test

experimental paradigmwas consistent with previous studies,
we performed a logistic regression to predict choice from the
difference in expected utilities (EUs) of two options (Thomas
et al., 2019) coded as 0 (unchosen) or 1 (chosen). For 4 × 4
trials, the left- or top-most option was coded as 0, and the
remaining option with the greatest EVwas coded as 1. Using
logistic regression, we estimated the probability of choosing
the left- or top-most option given the relative option value
(the difference between the left- or top-most option and the
remaining option with the highest EV). Regression param-
eters were fit to individual subjects based on their choice
behavior. For each trial, the difference in residuals between

actual choice probability and those predicted by the differ-
ence in EU were averaged separately for trials with positive
or negative gaze advantage. Gaze advantage was computed
as the difference in the proportion of the number of fixa-
tions made to one option compared to all others (Fig. 6, top),
the difference in the proportion of the total gaze duration on
one option compared to the time spent fixating on all others
(Fig. 6,middle), and their difference (Fig. 6, bottom). Finally,
we computed the average difference in choice probability for
options with positive versus negative gaze advantages when
adjusted for EU influence. Figure 6 shows the gaze advantage
in predicting choice behavior. At the group level in the 2× 2

Fig. 6 Gaze influence on
choice. Mean increase in choice
probability for an option due to
increased fixation count (upper
panel; blue), longer total gaze
duration (middle panel; red),
and their difference (lower
panel; grey) after accounting for
the influence of option value

123



Computational Brain & Behavior

experiment, the advantage has a mean value of 0.23, with a
standard deviation (SD) of 0.16 for the number of fixations,
0.26 (SD=0.18) for the gaze duration, and< 0.01 (SD=0.04)
for their difference. At the group level in the 4 × 4 experi-
ment, the mean advantage has a value of 0.07 (SD=0.06) for
the number of fixations, 0.06 (SD=0.05) for the gaze dura-
tion, and 0.02 (SD=0.03) for their difference.

In addition, to confirm the influence of gaze on choice, we
applied two versions of an expected utility× gaze regression
model (Glickman et al., 2019), inwhich theEUof eachoption
increases with the amount of time it is fixated (Fig. 7A) or
the number of times it is fixated upon (Fig. 7B). The multi-
plicative value of each option is computed as xα · p (2 × 2
experiment) and xα ·p+lα ·(1−p)

1+k·d (4× 4 experiment), see Eq. 1
and text immediately preceding it. The variables x , p, l, and d

are option amount, probability, loss, and delay, respectively.
The following parameters are fit for each participant sepa-
rately. k is a discounting parameter fit to each participant that
describes how steeply delay diminishes value. α is the indi-
vidualized risk parameter of EU (how likely each participant
would choose an option with a lower probability of winning
a higher amount compared to an option with a higher prob-
ability of winning a lower amount). In Fig. 7A and B, τ is a
saturation parameter that reflects the factor by which dwell
time or fixation number increases the value of the fixated
option. β is a slope parameter indicating the sensitivity of
the model to the difference in EU. Both dwell time and fixa-
tion count models displayed similar AIC values (Fig. 7C, E)
and improvements in prediction accuracy (the proportion of
correct choices predicted by the model) from the traditional

Fig. 7 Expected utility-based regression models. A Dwell time EU
model: the EU value of each option is influenced by the proportion of
time spent looking at each option. B Fixations EU model: the EU value
of each option is influenced by the proportion of fixations made to each
option. 2 × 2 trials: C AIC for the traditional, dwell time and number

of fixations EU. D Prediction accuracy for the traditional, dwell time
and number of fixations EU. 4 × 4 trials: E AIC for the traditional,
dwell time and number of fixations EU. F Prediction accuracy for the
traditional, dwell time and number of fixations EU
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EU models (Fig. 7D, F) where eye movement information is
not considered.Overall, this improvement in prediction accu-
racy was more pronounced in the 4× 4 condition relative to
the 2 × 2 condition.

Choice Prediction Performance of Computational
Models

The free parameters in all models introduced in
“Computational Methods” section were fit to the data based
on the training set, and performance of the models was
determined on the test set. Fitted parameter values and their
distributions for all 15models, both tasks, and all subjects are
shown in Supplemental Section S7 . We performed a model
recovery study, see “Model Recovery and Parameter Recov-
ery” section and Supplementary Section S9, to show that this
approach can distinguish themodels. The resulting confusion
matrices show that this is the case for some but not all of the
models.

Table 2 summarizes for all models their performance in
predicting the choices participants made in the simple task
(2 options, 2 attributes) and the complex task (4 options, 4
attributes). For each task, we rank the models according to
how accurately they explain the choices on the test set (last
column), i.e., the subset of observed choices that was not
used to optimize model parameters. The following sections
describe the factors that contribute to differences between the
performance of different models.

Model Ranking and Determination of the
Best-PerformingModels

Asmentioned, themodels in Table 2 are ranked by increasing
cross-validated prediction accuracy on the test set. To define
the best model, the highest-ranked model is compared with
the second-rankedmodel, then third-rankedmodel, etc., until
a significant difference is found. Models without significant
difference are all considered as the best models. In the 2× 2
task, there is one clear “winner,” i.e., one model whose per-
formance is significantly better than all other models: The
LCA-PT has significantly greater prediction accuracy on the
test set (p = 0.00011, paired t-test) compared with aDDM,
which is ranked second. In addition, it exceeds the perfor-
mance of all other models in all four criteria: it has the lowest
AIC score and lowest negative log-likelihood and the highest
prediction performance on both the training and the test set.
This consistency increases the confidence that the model is
superior over the other tested models. Our result is in agree-
ment with a prior finding (Glickman et al., 2019) where the
performance of the LCA-PT model was highest in a related
decision-making task of comparable complexity. It predicted
the choice behavior of a non-overlapping set of observers bet-
ter than all other tested models.

In the 4 × 4 experiment, the AMP has highest prediction
accuracy on the test set. Its performance is not statistically
different from that of the second-ranked model which is
LCA-PT (p = 0.30, paired t-test), and performance of these
two models is significantly better than that of the third-
ranked model (AMP to PROMETHEE, p = 0.025; LCA-PT
to PROMETHEE, p = 0.013; paired t-test). In absolute
numbers, the AMP model received the best scores in all
four measures. We also found that performance differences
between models are much starker in the 4 × 4 experiment
than in the 2 × 2 experiment. In particular, in terms of pre-
diction accuracy, both test and training, the AMP model’s
performance was more than twice as high than that of the
lowest-performing model (DbS).

Varying Task Complexity Influences Model
Performance

We study the performance of 15 different models for predict-
ing choices of human participants in two sets of gambles of
different complexity. For the set consisting of simple gam-
bles (2 options with 2 attributes each), we find a relatively
narrow range for the prediction accuracy. On the training set,
prediction accuracy varies from a low of 81.4% (for exhaus-
tive DbS) to a high of 92.4% (LCA-PT). The range is even
slightly smaller, 81.6% (exhaustive DbS) to 92.0% (LCA-
PT) for the test set, see Table 2. Though this reflects some
variation in model performance, all of these very different
models seem to be able to predict behavior reasonably well,
all making correct predictions for better than 80%, and some-
times 90%, of choices. We are possibly looking at a ceiling
effect that does not allow us to meaningfully differentiate
between the tested models. We note that this is not the case
for either the AIC measure nor the negative log-likelihood:
in both measures, the spread between models is much larger.
However, the two lowest-performing models for prediction
accuracy also have the worst measures for AIC and negative
log-likelihood, and the best-performing model for prediction
accuracy has the best results for these measures.

For the complex gambles (4 options with 4 attributes
each), the first observation is that overall prediction accuracy
is generally lower (this is not the case, however, if prediction
accuracy is compared to chance which is 50% for the 2 × 2
task and 25% for the 4 × 4 task). Each model performs less
well in this situation than the equivalent model in the sim-
ple situation. Overall lower prediction accuracy for a more
complex situation is, of course, not unexpected. More inter-
esting is that for the more complex choices, the differences
between models vary considerably more than in the simpler
task. Prediction accuracy on the test set varies from a low
of 38.1% (exhaustive DbS) to a high of 87.0% (AMP), i.e.,
by more than a factor of two (again, chance level is 25%).
Results are similar for the training set. To make sure that
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this is not simply due to a larger amount of data collected
in simple gambles (540 trials per participant in 2 × 2 case
versus 150 in 4×4 case), we reran the analysis on the former
using only the first 150 trials of each participant. No signifi-
cant effect on prediction accuracy was found for the number
of trials (two-way ANOVA, F1,990 = 0.117, p = 0.733),
nor was there a significant interaction effect between the
number of trials and choice of model (two-way ANOVA,
F14,990 = 0.730, p = 0.745). However, as expected, the
choice of models contributes significantly to the accuracy
(two-way ANOVA, F14,990 = 7.69, p = 1.34 × 10−15).

It thus appears that, even though there is one model that
significantly outperforms all others in the commonly used
2-option, 2-attribute choice task (LCA-PT), overall, this task
designmay not be very suitable to differentiate betweenmod-
els, at least if choice prediction is chosen as the criterion.

The pronounced differences of choice prediction perfor-
mance for the complex 4-option, 4-attribute task allow us
to differentiate between the model classes more clearly. As
mentioned, onemodel (AMP) outperforms all others, accord-
ing to all four criteria in Table 2. However, the difference
between theAMPmodel and the next best-performingmodel

Table 2 Summary of results for the 2 × 2 (top) and 4 × 4 (bottom) tasks

# of params AIC (training) Prediction accuracy (training) -2 Neg. log-likelihood (test) Prediction accuracy (test)

2×2 DbS 2 10589 81.4% 2671 81.6%

EV 1 10678 84.1% 2692 84.1%

aDbS 1 9682 85.5% 2454 85.3%

DFT 10 9544 85.8% 2756 85.4%

aDFT 7 10445 86.1% 2710 86.0%

BI-EV 1 10027 86.1% 2590 86.1%

PROMETHEE 5 8627 87.5% 2212 87.1%

AR 3 8986 87.6% 2297 87.4%

BI-PT 3 9311 87.5% 2425 87.5%

AMP 5 8961 88.3% 2271 87.8%

aaDFT 7 8483 88.7% 2138 88.4%

PT 3 8499 89.6% 2230 89.0%

LatentVariable 6 8821 89.5% 2083 90.4%

aDDM 6 7258 91.1% 2003 90.9%

LCA-PT 5 6549 92.4% 1674 92.0%

4×4 DbS 2 4953 38.0% 1338 38.1%

EV 2 2753 73.4% 704 73.1%

BI-EV 2 3338 76.9% 865 76.8%

DFT 14 2607 77.6% 791 77.4%

aDbS 1 2532 78.1% 650 77.9%

BI-PT 6 3188 79.6% 806 79.4%

aDFT 9 2647 80.1% 636 79.5%

aaDFT 9 2580 81.1% 612 80.7%

aDDM 9 2666 81.7% 874 81.6%

LatentVariable 12 2288 85.3% 582 81.7%

PT 6 2097 84.5% 633 81.9%

AR 5 2130 83.8% 576 82.2%

PROMETHEE 7 2177 84.0% 618 82.2%

LCA-PT 8 1940 87.1% 480 85.9%

AMP 5 1755 87.8% 471 87.0%

Shown are number of free parameters used for fitting per subject, Akaike information criterion (AIC), choice prediction accuracy for the training
set, negative log-likelihood, and choice prediction accuracy for the test set. All results were subject to five-fold cross validation (Section S3.5).
Models are ranked based on their prediction accuracy on the test set (last column). Within each task, bold numbers indicate that prediction accuracy
for that entry is significantly better than for all entries with non-bold numbers

123



Computational Brain & Behavior

(LCA-PT) is not significantly different in any of the four
criteria, making the two models statistically tied in their per-
formance.We note, however, that AIC differences exceeding
10 are considered very strong evidence in favor of the model
with the lower numerical values (Fabozzi et al., 2014). By this
criterion, the performance of the AMP model then exceeds
that of all others, including LCA-PT.

Sequence of Attentional Selections Strongly Affects
Decisions

One of the main questions we want to address in this
project is whether the detailed sequence of eye movements,
i.e., attentional deployment, does influence human behavior.
Alternatively, eye movements could be a random process for
gathering informationwhere the choice ismade based on that
information, but the order in which any particular piece of
information is acquired does not matter. To answer this ques-
tion, a comparison between the two decision by sampling
(DbS) models is useful because they are identical, except
that one takes into account the specific eye track and the
other does not. We find (Table 2) that the DbS model with
attentional influence performs far better than its exhaustive
versionwhere no attention history data of participants is used.
The former model’s accuracy on the test dataset exceeds the
latter by 3.7 percentage points in the 2 × 2 experiment and
by 39.8 percentage points in the 4× 4 experiment. It is clear
that the attentional history contains crucial information for
predicting the participants’ decisions, and this is especially
important when the task is more complex. That sampling of
attributes and objects is not uniform, or stochastically with
a uniform distribution, is reinforced by our behavioral find-
ings which show that only 58% of the available information
is used before the choice is made in the 4 × 4 case.

Asymmetry of the Effect of Positive vs. Negative
Attributes on the Choice

In the AMP model, the first stage of the decision process
is based on pairwise comparisons between attributes, i.e.,
the attended attribute of the attended option over the corre-
sponding attributes of the non-attended option(s). The result
of this comparison can either be positive (advantageous for
the attended attribute) or negative (disadvantageous). This is
quantified in the advantage function, Eq. 39. The parameter
ρ determines the weight of a positive vs. negative differ-
ence between attributes. Differences are weighted equally
for ρ = 0.5, with ρ > 0.5 indicating that positive informa-
tion is weighted higher towards the decision, and ρ < 0.5
the opposite. We find on average ρ = 0.814 in the 2 × 2
experiment and a significantly higher ρ = 0.961 in the 4× 4
experiment (p = 0.0013, Welch’s t-test). We note, however,
that ρ was only recoverable in the 2×2 experiment, not in the

4 × 4 experiment, so the statement in the previous sentence
needs to be treated with caution. The same applies to the next
paragraph.

At least in the simpler task, the value of attended attributes
therefore contributes more to the choice of an option when it
is favorable compared to when it is non-favorable. In other
words, participants weigh positive/advantageous informa-
tion higher than negative/disadvantageous information. This
“optimistic filtering” strategy may be explained by the ulti-
mate goal of the decision-making task which is to choose the
best option rather than rejecting inferior options (Sepulveda
et al., 2020; Glickman et al., 2018). Systematic application
of a rejection strategy would require the knowledge of all
options, which can be expensive undermany scenarios. Thus,
focusing mainly on positive information may be needed to
decrease the cognitive load by lowering the number of items
that need to be attended and/or kept in memory.

WorkingMemory of Integrated Attributes Retained
Between Fixations

In this section, we consider memory losses in the AMP and
LCA-PT models at the processing level at which attributes
have been observed and, at least potentially, integrated across
attribute values. For the LCA-PT model, the factor (1 − ψ)

is a measure of the decay of attribute memory from one fix-
ation to the next, Eqs. 27–30. Its mean value is 0.266 in the
2 × 2 experiment and 0.524 in the 4 × 4 experiment. For
the AMP model, δ controls the proportion of the advantage
matrix that is carried over to the next fixation, Eq. 31. Its
mean value is similar in both experiments, 0.707 in the 2×2
experiment and 0.784 in the 4 × 4 experiment. In all these
cases, a considerable proportion of information is therefore
lost between fixations. Even for the AMP model where the
decay is weaker, and for the smallest number of fixations
until choice (on average, 5.6 fixations for the 2 × 2 model,
see Table 1), the mean retained information from the first
fixation to the last is less than 15% (0.7075.6). The retained
information is negligible (< 10−3) for all other cases.

One possible interpretation is that the decision is highly
dependent on the last several fixations only. But what is then
the role played by fixations early on in each trial? Is the
information collected in these fixations essentially discarded
without playing a role in the decision process? While we
cannot exclude this possibility given the data presented, there
are at least two other interpretations.

The first explains this finding as a lack of correlation
between observations in early fixations and eventual option
selection. During the first fixations, participants have no
information about the value of many attributes because they
have never seen them. Only after a minimum of four (in the
2×2 task) or 16 (4×4 task) fixations have been executed can
all values potentially be known. A substantial fraction of par-
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ticipantsmay therefore sample the display components either
in random order (because they assume the order does not
matter) or in an idiosyncratic, stereotypical order (because it
is easiest to follow the same order in each fixation, and an
order goingmostly between neighboring symbols or symbols
corresponding to the same attributes or options may appear
natural). The present study does not address this question,
but we, indeed, found evidence for stereotypical behavior
for the first fixations when we performed formal analyses of
fixation orders (Elsey et al., in preparation). Data obtained in
these early fixations then serve to guide which attributes are
sampled later. However, the attribute values observed early in
the search, during either idiosyncratic sequences or random
sequences, are not correlated with attribute values observed
later, close to the decision. This lack of correlation results in
low values for (1 − ψ) in Eqs. 27–30 and for δ in Eq. 41.

A corollary of this hypothesis is that values for (1−ψ) and
δ should be considerably higher for “re-visiting” fixations,
i.e., fixations landing on attributes that had been sampled at
least once before. When we ran this analysis, to our surprise,
we found the opposite: Both of these parameters, for both
tasks, were lower than when all fixations were included. In
the 2 × 2 task, we now found (1 − ψ) = 0.08 (LCA-PT),
δ = 0.39 (AMP) and in the 4×4 task, (1−ψ) = 0.38 (LCA-
PT), δ = 0.64 (AMP). Furthermore, the prediction accuracy
of both models, again for both tasks, was lower than when
all fixations were included. In other words, including the first
fixations improved performance, knowledge of the values of
the first attributes influences the choice.

Taken together, our data are in agreement with a process in
which input from both the first fixations as well as the last fix-
ations contribute substantially to the choice, more than those
at intermediate positions in the sequence, We thus observe
both a primacy effect (high impact of first fixations) and a
recency effect (high impact of last fixations). This is a well-
known phenomenon of memory recall which is commonly
called the serial position effect (Deese & Kaufman, 1957).
Obviously, our assumption that memory contents decays
exponentially does not capture this effect.We expect that bet-
termodel performance can be achieve by replacing the simple
monotonic decay of memory contents by a more realistic
model. However, this goes beyond the scope of the current
study and is reserved for future work.

Inter-trial Effects AreWeak

What is the influence of the winning/losing history in pre-
vious trials on the choice in the current trial? Even though
in our experiment trial outcomes are independent, humans
are subject to biases like the hot-hand fallacy or gambler’s
fallacy (Rabin & Vayanos, 2010; Sacré et al., 2019) which
may create interactions between trials. While such interac-
tions cannot improve the participants’ gain (sum of rewards),

taking them into account in modeling their responses can
improve prediction of their responses. We therefore devel-
oped inSectionS3.2.1 the latent variablemodel, a variationof
prospect theory in which the reward history modifies model
parameters by taking into account dependencies between trial
outcomes.

We find that the additional degrees of freedom in the latent
variable model improve prediction accuracy on the test set
slightly in the 2×2 experiment (by 1.4 percentage points, the
difference is significant, p = 0.011, paired t-test) over that
of standard prospect theory, see Table 2, as well as in terms
of negative log-likelihood. However, the opposite is the case
for AIC and for the prediction accuracy on the training set.
For the more complex 4 × 4 task, the latent variable model
is slightly better than prospect theory as far as prediction
accuracy on the test set and on the training set is concerned
(by 0.2 and 0.3 percentage points, respectively) but worse
for the AIC and negative log-likelihood measures. Note that
since the latent variable model is a generalization of prospect
theory, a perfect optimization procedure should reduce the
former to the latter if the addition of between-trials interac-
tions reduces the model’s predictive performance. However,
this would require that all ten free parameters in Eq. 10 are set
exactly to their required values (all rx = 0 and all bx = x , for
x ∈ {α, β, γ, λ, k}). In this case, the latent variable LV can
still formally be computed, but it has no effect and the param-
eter a becomes irrelevant. We surmise that our minimization
procedure is not capable of reaching this global minimum in
the high-dimensional landscape of the optimization problem,
and that for this reason, prediction accuracy on the test set
(the cost function for the optimization) is worse despite the
availability of the additional (latent) variables.

Overall, it is fair to say that the impact of the latent
variables is small and that taking into account interactions
between trials brings little or no improvement to prospect
theory.

Discussion

Measures of Complexity

We are confident that our experimental design using four
options with four attributes each is more “complex” by any
reasonable measure of complexity, but we do not attempt
to formally quantify the “degree” of increase in complex-
ity. This is mainly because in the complex task, we add two
attributes (amount of potential loss, delay to reveal of out-
come) to the two attributes in the simple design (amount to
win, probability towin it). Taking into account two additional
factors by itself increases the complexity of the task, but there
are other factors that likely contribute too. For instance, in
the simple task, the outcome is either winning the speci-
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fied amount or not; there is never a loss. In contrast, the
complex gamble involves both a potential win and a poten-
tial loss. Combining these two factors, vs. only one factor
in the simple task, requires additional mental processing,
a hallmark of complexity of cognitive operations (Oprea,
in press). Likewise, taking into account the delay variable
increases additional processing which may include temporal
discounting but also hedonic cost, e.g., in the form of effort or
mental suffering. In this study, we do not attempt to quantify
these differences (although the subjective increase in hedo-
nic cost was very obvious in pilot experiments). Oprea (in
press) attempts to operationalize the concept of complexity
in human information processing, and such approaches may
allow to use more rigorous approaches in future work.

We also note that our main interest is in studying the
effect of task complexity on choice selection, and we use
a stochastic (risky) paradigm mainly because it is a conve-
nient and widely used experimental design. While it is not
always possible to extend conclusions based on one exper-
imental paradigm to others, recent work shows that some
mechanisms that previously have been considered specific
to risky choices can be explained, at least to a large extent,
to varying levels of task complexity (Oprea, 2024).

Highest Performance Is Achieved by Process Models

One conclusion we can draw from the comparison between
the computational models is that, overall, process models
tend to perform better than static models. The three best-
performing models in both the 2 × 2 and 4 × 4 experiments
are process models, see Table 2. It would be wrong, however,
to conclude that all process models are superior to all static
models. Indeed, the fourth-best model in both experiments
is a static model (prospect theory in the 2× 2 and AR in the
4×4 experiment, respectively). Furthermore, not all process
models are among the high performers. Among the lowest
performers in both experiments are two process models, the
aDbS and the BI-EV model.

Basic Assumptions of Prospect Theory and of the
AMPModel

The static models used in our model comparison are the clas-
sic economic models of risky choice. In particular, prospect
theory is the currently dominant model in behavioral eco-
nomics (Ruggeri et al., 2020).While not coming out at the top
in any category, prospect theory is among the best perform-
ers on our behavioral data set. This warrants a comparison
of its defining features with those of the AMP model, the
best-performingmodel in the complex decision situation. An
important difference is that the latter does notmake any of the
basic assumptions of prospect theory, like the specific forms
for the computation of expected utility or the nonlinear form

of the influence of probability to win. Of course, it makes
other assumptions, like the specific working memory model
we use or the computation of relative advantages. These con-
cepts are, however, closer to being interpretable in terms of
neuronal processing than the purely functional constructs of
prospect theory.

We also point out that computation of expected value or
utility, of any form, is nowhere required in the AMP model.
It has been argued many times (Stewart et al., 2006) that this
is a difficult quantity to assign to individual options, while,
on the other hand, relative value differences, which are fun-
damental to the PROMETHEE and AMP models, are much
easier to determine. For the simple task, it may be possible
for at least a sizable fraction of participants to compute some
approximation of an explicit option value (EV , utility, etc.)
resulting in good or even excellent results for models based
on this computation, like leaky accumulators or prospect the-
ory. This may not be possible anymore for the more complex
case where attribute differences remain easier to compute,
favoring the AMP model.

Relation of the AMPModel to the
Context-Dependent Preference Model

Some of the intuitions in the AMP model are similar to
those in a context-dependent model by Tversky and Simon-
son (1993). That model combines the effect of background
context (options encountered in the past) and local context
(offered option set in current trial), with the background
affecting the global change in the relative weight of the
attributes. In our model, this is captured by trial-specific
attribute weights ωπ(n) (the relative number of fixations to
attribute π in all trials up to the current one, trial n; this is
defined after Eq. 40). Attention to an attribute is taken as an
indicator of the importance a participant assigns to it, com-
pared to other attributes.

A second assumption in the Tversky and Simonson model
is that the effect of local context can be interpreted as a “tour-
nament” in which the candidate option is matched against all
the other presented options, and its overall score is the sum of
the results of thesematches. This is also the case in ourmodel
where several pairwise comparisons occur at every fixation
and the final decision is made from the accumulation process
of advantage values. Tversky and Simonson assume that the
disadvantage of option i over option j should have at least
the same impact as the advantage of option j over option
i . In contrast, in our model, we are agnostic to the relative
impacts of advantages and disadvantages of options, and we
allow them to vary unconstrained between participants.

The relative impact is controlled by the parameter ρ in
Eq. 39. It sets the influence of the contribution of the advan-
tage vs that of the disadvantage of an attribute directly. In the
2 × 2 task, we find that for a very large majority of partici-
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pants, this parameter takes essentially the value of unity, see
Fig. 22. Thus, the net impact of advantages strongly domi-
nates that of its disadvantages. The situation is similar in the
4×4 task; however, ρ was found to be not recoverable, so any
interpretation based on its value distribution has be to treated
with caution.Also, this effect appears to be the opposite of the
commonly found observation of loss aversion. It is important
to note, however, that loss aversion is usually, including by
Tversky and Simonson (1993), formulated when comparing
options, while ρ concerns the comparison of attributes.

Limitations and FutureWork

Behavioral data were collected from a total of 50 human vol-
unteers (number determined by power analysis, seeMethods)
that performed in our eye tracking experiment.One limitation
of the experimental design is that the spatial configuration
differs between the simple and the complex task. This may
encourage within-attribute processing in the complex task,
because the attributes are aligned (and easy to scan). We
believe this is a minor factor because another study with the
same spatial configuration of the complex task in this study
but the same number of options and attributes in the simple
task agreed with our findings in the simple task (Glickman
et al., 2019).

In the 2 × 2 task, the location of the symbols containing
the attribute information (blue andyellowmasks and symbols
indicating quantities below) are assigned random positions
within the option symbols (gray bars). In contrast, in the 4×4
task, these symbols are at fixed locations, except for global
flips between all option symbols oriented either vertically
or horizontally. Future work should study how randomizing
attribute locations in the 4 × 4 task affects behavior.

The two factors we used to increase the complexity from
the simply to the complex task are delay and amount of poten-
tial loss. Both are known aversive components in primate
decision-making. It would be of interest, however, to study
to what extent our results generalize to other factors.

We evaluate a number of computational models from a
variety of “families.” Some are classical models that have
been in use literally for centuries (EV), while others were
specifically designed by us for this study (AMP, exhaustive
DbS, DbS with attention, aDFT, aaDFT). Models range in
complexity from simple models with one free parameter to
the most complex with 14. Models come from a variety of
fields, mainly from economic theory but also cognitive sci-
ence/psychology, operations research/management science,
neuroeconomics, etc. Despite this diversity of models along
several dimensions, there are commonalities between all of
them. It is likely that other models differ in these respects
and that this limits the range of phenomena that the models
we study can explain. It would be very difficult, and go way

beyond the scope of this study, to include in the simulations
all possibly applicable models.

A limitation that concerns all process models we consider
(described in Sections S3.2 and S3.3) is that attention has a
sequential effect on action value updating. This framework
is consistent with a large body of work that sees selective
attention as amechanismdesigned to dealwith large amounts
of information that needs to be handled, in excess of what
can be processed in detail by the brain (Broadbent, 1958).
Selective attention solves this problem by identifying the
instantaneously most relevant information and suppressing
processing of all other input. The relevant information is
then processed sequentially in some priority order (Itti et al.,
1998; Niebur & Koch, 1998). It has also been proposed that
attention can be divided between targets, either by genuinely
parallel processes or by rapid shifting of the focus of attention
(Corbetta et al., 1991; Johnson & Zatorre, 2006). Theoret-
ical analyses have shown that a distinction between serial
and parallel processes is not trivial, e.g., by Townsend (1972,
1990).While ourmodels are compatiblewith “semi-parallel”
processing emulated by fast switching between sequential
stages, truly parallel mechanisms likely require model archi-
tectures that none of the 15 models considered in this study
covers. Furthermore, most of the cited work was done to
understandmechanisms of perceptual attention, but the basic
principles may also apply to the use of attention in decision-
making.

Another limitation of our modeling work is that we do
not make use of all data that we gather in the empirical
part of this study. Our strategy is to use fixation data gen-
erated in response to the stimuli presented and use models to
explain the choices the participants make. We do, however,
also have access to the times when these choices are made,
i.e., the reaction times (RTs). Two recent papers (Evans et
al., 2019; Molloy et al., 2019) have shown that including
RT distributions can play an important role in constraining
computational models used to understand context effects in
multi-attribute decision-making, in particular violations of
normative theories like the attraction, similar and compro-
mise effects. Molloy et al. (2019) showed that estimates of
parameters of the influential multi-attribute linear ballistic
accumulator (MLBA)model are improved by addingRTdata
to the commonly used (including by us) choice data alone.
Evans et al. (2019) add three more computational models
to the MBLA, including two that are closely related to some
that we include in our study (LCA andmulti-alternative deci-
sion field theory, MDFT). They argue that using only choice
behavior can lead to spurious conclusion in the study of the
mentioned and potentially other context effects.

It would be of great interest (and it is a target for future
work) to compare our approach with one that uses not only
the choice data but also the reaction time distributions. Such
a study would be even more useful if it considered separately
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violations of normative theories like those listed above and
more generic decision-making situations like those addressed
in our current study. This might answer the question whether
RT data is critical to distinguish between computational
model performance only in specific contexts, as in the care-
fully controlled violations of normative theories, or more
generally in a large number of decision-making situations.

As a first approach, we have regressed the decision time
(sum of all fixation durations in a given trial) over the dif-
ference in expected value (with hyperbolic discounting for
the 4× 4 task, as described) between the two options. Aver-
aged over all participants, we find highly significant negative
correlations in both the 2 × 2 and the 4 × 4 tasks (corre-
lation coefficients -0.194, p = 1.91 × 10−155 and -0.115,
p = 2.08× 10−9, respectively; Wald’s test, null hypothesis:
correlation=0). This is consistent with the expectation that
more difficult choices (similar expectation values for both
options) result in longer decision times. These results may
also provide support for the idea that people integrate evi-
dence (which is sensitive to the EV-difference) to a response
criterion. Models compatible with this idea (like LCA-PT
and aDDM) may be good candidates for future work.

A more general limitation applying to all of our models is
that their final choice stages assume a parallel representation
of the action value of all available options, which compete
with each other. While this mechanism seems to make func-
tional sense, potential use of other selection types is at least
conceivable. One example is a random selection from a class
of candidate choices. None of the models discussed in this
study implements such a choice mechanism.

Conclusion

We carried out two behavioral experiments in which human
participants made risky decisions between lottery options.
We varied the level of complexity, and we monitored the
attentional state of participants via eye tracking. Fifteen
choice models were examined in their ability to predict the
choices made by the participants. All models predict choices
significantly better than chance. As expected, overall predic-
tive performance is higher for the simpler than for the more
complex task. We found that the increase in task complexity
leads to a switch from within-alternative to within-attribute
processing. Furthermore, there are only small differences in
predictive performance between models in the case of the
simple task, a possible ceiling effect, while for the com-
plex task, different models are clearly distinguished by the
quality of choice predictions. This raises doubts to what
extent the simple task, which is commonly used in studies
of risky decision-making, is suitable for rigorous compar-
isons of computational models. Finally, we find that the

best-performing models have in common that they take into
account attentional behavioral data and that they incorporate
explicit memory mechanisms.
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