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Abstract
The replication crisis in experimental psychology and neuroscience has received much attention recently. This has led to 
wide acceptance of measures to improve scientific practices, such as preregistration and registered reports. Less effort has 
been devoted to performing and reporting the results of systematic tests of the functioning of the experimental setup itself. 
Yet, inaccuracies in the performance of the experimental setup may affect the results of a study, lead to replication failures, 
and importantly, impede the ability to integrate results across studies. Prompted by challenges we experienced when deploy-
ing studies across six laboratories collecting electroencephalography (EEG)/magnetoencephalography (MEG), functional 
magnetic resonance imaging (fMRI), and intracranial EEG (iEEG), here we describe a framework for both testing and 
reporting the performance of the experimental setup. In addition, 100 researchers were surveyed to provide a snapshot of 
current common practices and community standards concerning testing in published experiments’ setups. Most researchers 
reported testing their experimental setups. Almost none, however, published the tests performed or their results. Tests were 
diverse, targeting different aspects of the setup. Through simulations, we clearly demonstrate how even slight inaccuracies 
can impact the final results. We end with a standardized, open-source, step-by-step protocol for testing (visual) event-related 
experiments, shared via protocols.io. The protocol aims to provide researchers with a benchmark for future replications 
and insights into the research quality to help improve the reproducibility of results, accelerate multicenter studies, increase 
robustness, and enable integration across studies.
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Introduction

The remarkable progress of experimental human neuro-
science in recent decades, fueled by the development of 
technologies to survey the brain non-invasively, has been 
partly overshadowed by the many examples of replication 
failures (e.g., Hirschhorn & Schonberg, 2024). Replication 
failures may stem from a number of factors (Open Science 
Collaboration, 2015), for instance, low standards of power 
calculations (Button et al., 2013; Ioannidis, 2005), the use 
of questionable statistical methods (e.g., Cumming, 2014; 
Wicherts et al., 2016), publication biases in favor of positive 
findings (Fanelli, 2012), or scarce description of the methods 
(Poldrack et al., 2008; Simmons et al., 2011).

The community has responded to those challenges by pro-
moting better scientific practices that address those issues 
(Munafò et al., 2017). By now, determining sample sizes 
based on power analysis has become a common practice 
(e.g., Mumford & Nichols, 2008), journals also more rou-
tinely publish negative or null results (e.g., Baxter & Burwell, 
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2017), and preregistering the planned design and analyses is 
on the rise (e.g., AsPredicted, Open Science Framework). 
These procedures have had a large impact on the scientific 
community (Logg & Dorison, 2021; Protzko et al., 2023). 
One aspect that has received less attention in the empirical 
sciences, however, is the functioning of the experiment itself: 
does the experiment run as expected? While at first glance the 
reader may assume that experiments always run as planned 
and that if errors occur, they do not significantly impact the 
results, here we show a large variance among researchers 
when it comes to testing the experimental framework. Fur-
thermore, we demonstrate that errors in the functioning of 
the experiment (e.g., the timing of the stimuli) can impact 
the results and their interpretation. Despite its importance, no 
standardized procedure for testing and reporting the quality 
of the experimental setups currently exists.

Standardized procedures are becoming more relevant 
given the increased number of multi-lab studies (e.g., Frank 
et al., 2017; Melloni et al., 2021; Pavlov et al., 2021) and the 
increased availability of openly shared data. The large diver-
sity of software and hardware poses a major challenge when 
integrating data across different laboratories, which often 
acquire data using different setup specifications. A similar 
issue arises when reusing openly shared data collected in 
various neuroscientific paradigms (Sejnowski et al., 2014). 
Without metadata describing the functioning of the experi-
mental setup itself (variability in the presentation duration 
of the stimuli, reliability of the timestamps, etc.), integrating 
multiple datasets can pose problems, as it necessitates deter-
mining a priori how comparable the data are (Carp, 2012). 

For that, information about if and how the experiment was 
tested is important.

To demonstrate the need for a standardized testing frame-
work, we first surveyed current practices in the field when it 
comes to testing and reporting the functioning of experimen-
tal setups in neuroscience. Testing practices varied among 
researchers, and many acknowledged discovering malfunc-
tioning upon data collection. We then used simulations to 
demonstrate that even minor inaccuracies in hardware and 
software can alter results. Finally, we propose a standard-
ized framework for testing and reporting the functioning of 
experimental setups for event-based designs. We provide an 
easy-to-use protocol, openly available in proto cols. io.

Common testing practices: A survey

To investigate current practices of testing experimental set-
ups in behavioral and neural science, 100 psychologists and 
neuroscientists reported on studies they had recently carried 
out. The majority of respondents studied human participants 
(94/100), collected neural data (67/100), and were early-
career researchers (40/100 graduate students, 36/100 post-
doctoral/senior researchers, 16/100 principal investigators).

Almost all respondents reported testing the experi-
mental setup prior to data acquisition in a large majority 
of experiments (91/100), while a few (5/100) tested only 
some experiments or never tested the setup before data 
collection (4/100). The aspects of the experimental setup 
tested varied greatly among researchers (Fig. 1). Most 
tested the overall duration of the experiment (84/96), 

Fig. 1   The type and frequency of pre-experimental tests, declared 
by researchers to have been conducted prior to their last published 
experiment ( N  = 96).  Y -axis: percentage of respondents.  X -axis: 

aspect of the experimental environment tested (selected from a list of 
options; see Supplementary Material  1 ). The terms "event timing" 
and "event content" are defined in Box 1

https://www.protocols.io/blind/70F93740980211EE9C6B0A58A9FEAC02
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while a smaller proportion tested the accuracy of the 
event timings (60/96; see Box 1). There was also consid-
erable diversity in the methods used to test the experimen-
tal setup, both between researchers (e.g., manual checks 
[48/96], scripted checks ([1/96], both types ([47/96]) 
and within the same lab between experiments (when 
asked whether the tests were based on a protocol, 53/96 
responded that each experiment was tested differently; 
see Supplementary Material 1 for survey and the full set 
of results).

Strikingly, a large proportion of researchers (64/100) 
reported noticing an issue after data collection that could 
have been avoided through prior testing. This reinforces 
the need for a streamlined procedure to benchmark the 
experimental setup (or experimental environment, as 
defined in Box 1), which could prevent the collection of 
unusable data and facilitate replication.

Box 1 Definitions of terms

Box 1: Definitions

Event-based design: an experimental design in which the participant 
is presented with specific stimuli (e.g., images, sounds) at prespeci-
fied times, to measure the reaction to those stimuli (e.g., behavior, 
neural activity, physiological response).

Event: refers to the presentation of a certain stimulus at a particular 
time in an event-based design.

Event timing: refers to the time during the experiment when an event 
of interest takes place in an event-based design.

Event content: refers to all aspects specifying an event, regardless 
of its timing during the experiment. For example, for a visual 
stimulus, its content comprises its identity (e.g., “a face”), location 
(e.g., “screen center”), and other features that differentiate it from 
the rest of the stimuli in the experiment and/or are relevant to the 
experimental conditions (e.g., orientation, color, luminance, size, 
presentation duration, belonging to a specific category of stimuli, 
task relevance, congruency with other events).

Experimental design: refers to the desired scheme that dictates how 
many stimuli shall be presented from each category, the expected 
order in which they shall be presented, and their duration and tim-
ing. It specifies both the timing of the expected sequence of events 
and the event content.

Experimental environment: all hardware and software that is part of 
the experiment. This includes, but is not limited to, the software 
used to present stimuli and collect responses from the participant 
(experimental software), the computer on which the experimental 
software runs (experimental computer), and any device that the 
experimental software and the computer communicate to during the 
experiment (peripherals). For example, peripherals could include 
the screen on which a visual stimulus is presented, cameras that 
record the participant, and devices measuring neural and/or other 
physiological activity.

Experimental computer (EC): the computer on which the experimen-
tal software runs to present the participants with the events of the 
experiment.

Experimental software (ES): the software (e.g., Psychtoolbox, Psy-
choPy, Presentation) executing the experimental program on the 
EC.

Box 1: Definitions

Log file: all the information written to the EC’s disc through the ES 
during a single experimental run. This includes information about 
all events presented during the experiment (event content and tim-
ing) and all the measurements the EC recorded directly (e.g., mouse 
click, keyboard response) and indirectly (e.g., information reaching 
from peripherals). When the peripheral runs on its own internal 
clock (see Fig. 2), its output is recorded on a separate file. Thus, one 
experiment could have several output files.

Peripherals: all the hardware (and the software used to operate it) that 
are connected to the EC, or communicate with the ES in some way. 
We refer to two peripheral types: (1) peripheral devices with their 
own internal clock (e.g., neural imaging hardware and software), 
which communicate with the EC via triggers, and (2) devices that 
are run on the EC’s internal clock (e.g., response box, keyboard, 
computer mouse). All peripherals are part of the experimental 
environment.

Experimental output: all output files produced by devices that are 
included in the experimental environment. This includes all the 
output files of both the ES and peripherals.

Triggers: messages sent to/from the EC from/to peripherals, used in 
order to synchronize the peripherals and ECs.

Controlled events: any experimental events controlled by parameters 
predefined by the researcher, e.g., stimuli presented to the partici-
pant.

Uncontrolled events: any experimental events that depend on and are 
controlled by the participant (and not the researchers), e.g., partici-
pants’ motor responses.

Events’ physical realization: the actual occurrence of an event within 
the experimental environment (as opposed to the planning or log-
ging of that event). The exact timing of the physical realization of 
an event can be determined by measuring the changes in the physi-
cal properties of the experiment setup (e.g., changes in luminance, 
or changes in decibels).

Delay: refers to constant temporal shift between the physical realiza-
tion of an event and its recorded timestamp on an experimental 
device clock. For example, the timestamping of stimulus onsets 
recorded by EEG triggers is systematically delayed by 32 ms rela-
tive to the actual stimulus onsets (which can be inferred from the 
photodiode signal). Such delays have been discussed extensively in 
the M/EEG literature (Farzan et al., 2017; Pernet et al., 2018). By 
measuring these constant delays, they can easily be compensated 
for by shifting events' timestamps by the measured delay before data 
analysis (dedicated functions have been developed to do so, mne: 
epochs.shift_time, fieldtrip).

Jitter: refers to the varying temporal shift between the physical reali-
zation of an event and its recorded timestamp on an experimental 
device clock. Unlike the delay, jitters are not constant across trials 
and therefore cannot be easily compensated for.

Despite performing tests, results in publications (80/96) 
either because they considered reporting the results irrel-
evant (43/96) or because they did not know where to 
present them (38/96), or both (15/96; Figs. 3). Report-
ing practices, from reporting in the methods section, in 
the preregistration, in their lab book, or supplementary 
materials. A small proportion of researchers who never 
reported results (10/80) assumed that all published work 
had been thoroughly checked. However, as we have seen, 



 Behavior Research Methods

the assumption that experimental tests and methods are 
consistent and error-free is not warranted, given the vari-
ations in testing procedures and the prevalence of errors 
identified retrospectively, during or after data collection. 
Thus, reporting of test results is crucial. If widely adopted, 
this practice would encourage more thorough testing, 
reduce errors, and enhance data accuracy across experi-
ments and datasets.

Simulations of experimental environment 
malfunction

The survey demonstrated that research practices for test-
ing the experimental setup vary widely, and that if tests 
are conducted, they are often not reported. Yet, researchers 
acknowledged discovering inaccuracies after data acquisi-
tion which could have been prevented. How severe are those 

Fig. 2  The image illustrates the connections between the vari-
ous components and devices used in an example experiment. Top 
left: A participant sits in an experimental environment (see Box 1). 
They face a computer screen displaying a green star. Underneath is 
an eye-tracking device (black) and a response box. An EEG cap and 
amplifier are displayed as an example of neural measurement. Top 
right: The screen connects to the experimental computer which runs 
the experimental software (see Box  1). Bottom right: An example 
peripheral device recording neural data, connected to both the experi-

mental computer (top right) and the EEG amplifier (top left). Bottom 
left: An example peripheral device recording eye-tracking data con-
nected to both the eye-tracking camera (top left) and the experimental 
computer (top right). Clocks in each box indicate the device’s inter-
nal clock. Dashed arrows depict connections between components of 
independent devices. Solid black arrows represent connections send-
ing triggers from the experimental computer to peripherals used for 
synchronization between recording devices.
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inaccuracies to warrant extra testing and reporting? We 
simulated inaccuracies in event content and event timing to 
demonstrate whether and how they can affect experimental 
results (Supplementary Material 2 for full simulation). For 
this demonstration, we focused on reaction time data and P1 
event-related potential (ERP), as both are widely used meas-
urements and highly susceptible to timing inaccuracies. Both 
behavioral and neural simulation results are generalizable 
to other ERP components and uncontrolled events (events 
evoked by participants’ responses; see Box 1). We simu-
lated two experimental conditions, representing two stimulus 
groups (see Supplementary Material 2 for the complete pro-
cedure). The simulation followed a common experimental 

hypothesis of a difference between two conditions, in both 
the P1 average amplitude and mean reaction times. The dif-
ference between the two conditions was referred to as � . To 
simulate inaccuracies in event contents, we shuffled stimulus 
labels on some trials (between 2% and 40%); for inaccura-
cies in event timings, we introduced a jitter of a predefined 
duration (from 2 to 40 ms) on some trials (between 2% and 
40%). Simulations show that content and timing inaccuracies 
considerably diminish and sometimes even obliterate statisti-
cal differences between experimental conditions.

Figure 4A shows that at small effect sizes ( �= 0.2), a 
small proportion of shuffled-label trials (20%) was enough 
to abolish a statistical effect in P1 amplitude. For the 

Fig. 3   Reporting practices of researchers who declared testing 
their last published study ( N  = 96, since four respondents declared 
not testing their experiments at all). Outer circle: responses to “Did 
you report about the checks you performed and their results?” Red: 
respondents declaring not reporting the results of the tests ( N  = 80). 
Light blue: respondents declaring reporting the results of some tests 
( N  = 15). Blue: one respondent who reported the results of all the 

performed tests. Inner circle: responses to “If you did not report the 
checks, why not?” Orange: because it was irrelevant ( N  = 3 out of 
the “some” category,  N  = 40 out of the “no” category). Grayish-
blue: because it wasn’t known where to report the results ( N  = 11 
[“some” category],  N  = 26 [“no” category], and 1 reporting the test). 
Tan: because it was irrelevant and not known where to report the 
results ( N  = 1 [“some” category],  N  = 14 [“no” category])
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reaction time, the same was observed when 5% or more 
labels were shuffled across trials (Fig. 4B). Jitter in stimu-
lus timing also significantly affected the measured statis-
tic: Figure 5B shows that a jitter of 16 ms (a frame on a 
60 Hz monitor) on 15% of the trials was enough to render 
P1 effects insignificant. For a 32 ms jitter, the same out-
come was observed when 5% of the trials were affected. 
The effect of jitter was comparable for the reaction time: at 
�= 0.2, a 16 ms jitter affecting 15% of trials was sufficient 
to abolish the effect, and the same was observed at larger 
effect sizes ( �= 0.5) with a 32 ms jitter (two frames) in 5% 
of trials (Fig. 5D).

Taken together, the simulation results reinforce the 
importance of testing the recorded stimulus contents, 
showcasing the effect that timing inaccuracies and impre-
cision of the hardware (experimental computer [EC]; 
the computer on which the experiment runs; Box 1) can 
have. Recent studies suggest that inaccuracies in mod-
ern experimental software (ES; e.g., PsychoPy: Brainard, 
1997; Psychtoolbox: Peirce, 2007) are minimal (on the 
sub-millisecond level, Bridges et al., 2020). This is only 
the case when the experiment is run in an ideal experimen-
tal environment. Accordingly, proper testing is required 
to ensure that this is indeed the case. This is even more 
important given the variations in the interaction between 
the EC and the ES (for example, in Psychtoolbox, a screen 
flip can be missed if too many textures are open; see defini-
tion in Box 1). Thus, our simulation results highlight the 
need for standardized testing of the experimental environ-
ment. Here, we argue that performing a few basic tests can 
increase event-based experiment reproducibility, improve 
data integration across datasets, and ultimately minimize 
errors, increasing efficiency. Next, we describe a standard-
ized framework of tests.

Framework

We describe a standardized framework to benchmark the 
experimental environment in event-based designs including 
a standardized reporting protocol (protocols.io). The frame-
work is aimed at helping researchers without imposing addi-
tional burdens on their standard experimental procedures. As 
such, it strikes a balance between exhaustiveness and ease 
of use. As a starting point, the framework is best suited for 
studies involving visual stimuli while collecting responses 
from participants (neural responses as well as behavior and 
eye-tracking data). Extension to other modalities (e.g., audi-
tory, tactile) and response devices (e.g., microphone) will 
be needed. To illustrate the framework, we programmed 
a simple experiment in which we conducted all the tests, 
described step by step in a Jupyter notebook (see Supple-
mental Material 3). The notebook aims to help researchers 
in understanding the implementation of the framework, serv-
ing as an accessible resource that can be adapted for testing 
future experiments.

Each section starts with the motivation for testing a 
given aspect of the experimental environment, followed 
by the testing guidelines and the standardized reporting 
protocol (see proto cols. io). A successful visual event-based 
experiment necessitates thorough testing and validation 
of four key aspects: (1) the completeness and accuracy 
of the log file regarding event content, (2) the same for 
event timing, (3) the alignment between actual events and 
the planned experimental design, and (4) the reliability 
of peripheral triggers. This ensures experimental integrity 
and comparability across different studies and laboratories. 
Testing typically involves running the entire experiment at 
least once in the final experimental setup, as the hardware 
significantly influences the precision and accuracy of the 

Fig. 4  Effect of label shuffle on the P1 (A) and reaction time (B) 
t-statistic. The heatmap represents the observed t-statistic as a func-
tion of the simulated effect size (x-axis) and proportion of trials for 

which the labels were shuffled (y-axis). The color bar is centered on 
1.96. Values below significance are colored in shades of blue, while 
values above significance are colored in shades of orange.

https://www.protocols.io/blind/70F93740980211EE9C6B0A58A9FEAC02
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experiment. While these aspects are discussed separately, 
they can generally be tested in a single experiment run, 
unless specified otherwise. We provide a visual represen-
tation of the implementation of all steps of the framework 
(see Figs. 6).

Validating the features of the controlled 
events

Why test it?

In most visual experiments, standardizing the visual angle 
and eccentricity across participants is crucial. The initial 
step involves correctly setting up the visual angle and eccen-
tricity in the experimental environment. This standardiza-
tion is foundational for all subsequent tests and ensures that 
experimental events are presented under consistent con-
ditions. This step is critical for both multi-lab studies and 
single-lab experiments, facilitating accurate replication by 
ensuring visual equivalence between original and replica-
tion setups.

How to test it?

First, three measurements should be obtained: the screen’s 
height and width in pixels (i.e., the screen resolution), the 
screen’s height and width in metric units, and the distance 
between the eye and the screen (in metric units). From the 
screen dimensions in centimeters and pixels, a conversion 
factor between pixels and centimeters should be computed 
as follows:

Using either the right or the left equation (i.e., the height 
or the width) should yield the same results, except for dis-
plays in which the pixel aspect ratio is not 1:1. In all other 
cases, inequality indicates measurement issues. After obtain-
ing the conversion factor c, event sizes and offsets can be 
calculated in degrees of visual angles from screen pixels and 
size in metric units.

The next step is to measure the size and eccentricity of 
a specific experimental event. Once presented, the size and 
eccentricity of the visual event can be measured in metric 

(1)c =
Heightcm

Heightpixel
or c =

Widthcm

Widthpixel

Fig. 5  Effects of timing inaccuracies on t-statistic for ERPs (A, B) 
and reaction time (C, D). A, C 3D plot relating the proportion of jit-
tered trials (x-axis), jitter duration (y-axis), and t-statistic (z-axis) as 
a function of effect size ( θ , color bar) for P1 amplitude and reaction 
times, respectively. Gray hyperplane depicts significance threshold of 

t = 1.96. An example at θ = 0.2 for P1 amplitude (B) and reaction time 
(D). The color bar centered on 1.96, values below significance are 
colored in shades of blue, while values above significance are colored 
in shades of orange
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units. Then, the inverse tangent can be used to calculate the 
vertical and horizontal visual angle of a stimulus using right-
angle trigonometry:

(2)� = 2 × atan

( size

2

distance

)

Fig. 6  Flowchart of the implementation of the testing framework. 
(1) First, the experiment should be adjusted to present a photodiode 
square and record the sounds from a contact microphone measur-
ing the sound produced by keyboard presses. In addition, a response 
sequence should be planned. (2) Then, a set of pre-run tests should 
be performed. The first consists of measuring the size of the stimuli 
in centimeters to compute the size of the observed stimuli in degrees 
of visual angles. In addition, several trials of the experiment should 
be run, manually annotating what was presented on the screen in 
each trial. These manual annotations should then be compared to 
the log file entries to ensure that the log file accurately records what 

was actually presented. (3) The experiment should then be run in full 
while recording the photodiode and microphone signals as well as the 
log file for offline analysis. (4) Then, the recorded photodiode signal 
should be compared to the log file to estimate event timing inaccu-
racies. The microphone signal should be compared to the log file 
response timestamping to assess the responses’ timestamping inaccu-
racies. In addition, the logged responses should be compared to the 
planned response sequence defined in step (1) to ensure that the log 
file accurately records the pressed buttons. Finally, the experimental 
design can be tested for correctness based on the log file and photodi-
ode timing information
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where both size and distance are in metric units.
Similarly, the eccentricity should be calculated in visual 

angles by measuring the distance between the center of the 
screen and the center of the stimulus of interest (assuming 
fixation is in the middle of the screen) and applying the same 
formula (2).

Note that in the case that stimuli are off-centered, the 
measurement of the stimulus size in visual angles needs to be 
adjusted to account for the tilt between the screen and the eye. 
SR Research offers a free tool for visual angle calculation, for 
all types of stimuli (centered, one-sided, off-center; see www. 
sr- resea rch. com/ visual- angle- calcu lator/). When experimental 
events differ in size and eccentricity (e.g., stimuli displayed in 
different locations or differing in size), each such event should 
be measured at least once (per location, per size).

How to report it?

To report the relevant visual features in degrees of visual angle, 
the measured distance of the screen should be reported in cen-
timeters (to describe the conditions under which the size of the 
stimuli was tested). For the stimuli, the measured height and 
width should be reported in degrees of visual angle. If differ-
ent stimuli sizes are relevant to the experimental design, those 
should be measured and reported too. Similarly, if the stimuli 
are presented at a given eccentricity, both the expected and 
measured horizontal and vertical distance from the center of 
the screen should be reported (also in visual angles). Report-
ing both the horizontal and vertical visual angles from the 
expected center of the participant’s gaze provides the unique 
position of the stimuli. Thus, it is preferable to report the dis-
tance between the center of the stimulus and where participants 
are supposed to fixate (usually, the center of the screen).

Testing the reliability of the log file event 
content

Controlled events

Why test it?

For accurate analysis, researchers must ensure that the con-
tent of events presented to participants is correctly recorded 
in the log files (see Box 1). This involves verifying that 
logged events match the actual events presented. Errors in 
the experimental software (ES) or hardware (EC) can lead to 
incorrect logging, such as mislabeling stimulus categories or 
identities, which can significantly alter experimental results. 
Any discrepancies require rectifying and retesting until the 
log file accurately reflects the presented content. While sys-
tematically checking log files, especially for experiments 
with complex stimuli like videos, can be challenging and 

time-consuming, it is crucial for ensuring the validity, inter-
pretability, and reproducibility of the results.

How to test it?

Comparing the on-screen content with that of the log file where 
the content is documented requires running the experiment, 
ideally, from start to end (without participants), noting the 
event content presented on the screen (e.g., the stimulus identi-
fier and relevant features such as orientation, location, color). 
Manually noting the content of each stimulus throughout the 
entire experiment might not be feasible, especially for experi-
ments containing hundreds of trials. The compromise recom-
mended here is to minimally check the content of each event 
condition at least once (though exhaustive testing is, of course, 
preferred). For example, suppose an experiment presents two 
stimulus groups (e.g., faces and objects) at four possible loca-
tions. In that case, the manual recording of event content during 
the experiment should at least cover a stimulus from each group 
appearing at each location once. By event condition, we refer to 
any feature relevant to the experimental design (e.g., category, 
location, task relevance, color, congruence). For designs with 
nested conditions (e.g., stimuli of different groups presented in 
different task-relevance conditions), a condition is understood 
as a combination of conditions (a task-relevant face constitutes 
a condition, and task-irrelevant faces another).

As events can be fast-paced, it might be impossible to 
mark them manually in real time. Therefore, we recommend 
following one of two options: One possibility is using exter-
nal recording devices and software (cameras, microphones, 
or other recording software) to record the presented events, 
tagging them based on the recording’s playback. Importantly, 
the recording device needs to be external to the experimental 
environment (e.g., not a recording software running on the 
EC), as otherwise, it might interfere with the functioning of the 
experimental environment (as a screen-recording software is 
not expected to run in the data collection phase). Alternatively, 
the pace of the experiment could be slowed down for testing 
purposes in the ES such that the event content can be noted. 
The downside is that then two separate tests are required: one 
for testing the event content and a separate one for testing the 
reliability of the event timings (see next section).

The logged on-screen contents are then compared to the 
saved log files of the test run, expecting complete consist-
ency between the two. Discrepancies point to malfunction of 
the ES, requiring correction prior to data collection.

How to report it?

The report on logging content inaccuracies should briefly 
describe the test method, detailing (i) the number of differ-
ent conditions tested (considering unique combinations of 
nested conditions), (ii) the number of individual events tested 

http://www.sr-research.com/visual-angle-calculator/
http://www.sr-research.com/visual-angle-calculator/
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within each condition, and (iii) the count of events that were 
incorrectly logged out of the total presented. Ideally, in a 
fully functioning experiment during final data collection, this 
count of inaccurately logged events should be zero.

Uncontrolled events

Why test it?

Uncontrolled events are those that depend on the partici-
pants’ behavior without any control from the experimenter 
(see Box 1), which are made on devices recorded by the EC 
(and not on peripherals). This test validates the assumption 
that the EC correctly registers EC responses into the log 
files. This is done by comparing the actual responses (made 
by the experimenter during the test) with the logged ones 
(recorded in the log files).

How to test it?

To validate the fidelity of the logged responses, the experi-
ment should be run from start to end, recording the actual 
and logged responses made under a systematic, preplanned 
response sequence. This response plan provides a “recipe” 
to evaluate whether responses are properly logged and cor-
respond to the executed responses. The purpose of the plan 
is to test the correct assignment of response buttons, coun-
terbalancing, handling multiple or erroneous responses per 
single event, and logging responses that occur at unexpected 
moments during the experiment. To test the correct assign-
ment of response buttons, the response plan should include 
at least one response of each type the participant is expected 
to make. When response mapping is counterbalanced within 
an experiment (e.g., a key is mapped to “Yes” in one block 
and “No” in another), the response plan should also include 
responses of the same buttons before and after such changes 
to determine whether the mappings are reflected in the log 
files. Handling multiple or erroneous responses is crucial, 
as participants’ behavior might deviate from that expected 
by the researchers. Therefore, the response plan should 
include responses using unexpected keys, cases where a key 
is pressed more or fewer times than expected (e.g., multiple 
presses when a single press is expected), or when more than 
one button is pressed simultaneously.

The final step is to compare the response plan with those 
recorded on the log file. If executed responses followed the 
response plan, any incompatibility found points to errors 
in the ES which require correction prior to data collection.

How to report it?

The count of uncontrolled events' content inaccuracies 
should include a description of the test procedure and 

response plan, along with three key metrics: (i) the number 
of different response types (various buttons pressed), (ii) 
the number of responses for each type, and (iii) the count of 
responses inaccurately logged out of the total responses. Ide-
ally, in the final data collection phase, the number of inac-
curately logged responses should be zero.

Testing the reliability of the log file event 
timing

Controlled events

Why test it?

Malfunctions in hardware or software can lead to inaccura-
cies or a lack of synchrony among three crucial timestamps: 
the time when a request to display an event is made, the 
actual occurrence of the event in the experimental hard-
ware, and the time of the event as recorded in the log file. 
Discrepancies between these timings often reflect EC and 
ES limitations, rather than human error. Once a request 
to present an event occurs, the EC processes it along with 
other requests received at a given time leading to potential 
delays in the execution. In addition, the computer presents 
stimuli at a given refresh rate, limiting the display update to 
a certain number of times per second. As such, the stimulus 
presentation request has a narrow window to be processed, 
and when missed, the presentation only occurs in the next 
frame, unintentionally prolonging the previous event. Vari-
ous factors (e.g., the EC’s graphics processing unit and CPU, 
parallel programs running in the background other than the 
ES) affect processing times and latencies caused by them. 
Furthermore, logging the timing of an event in the log files 
is inferred rather than logged in real time, as modern com-
puters do not operate in real time. Thus, discrepancies can 
arise between the actual event timing and the inferred time 
recorded in the log file. As such, jitters are to be expected. 
Yet, large timing deviations require intervention in either 
the EC or ES. For example, the EC might have insufficient 
system resources available to run the experiment (solution: 
free up EC memory, stop unnecessary programs running 
in the background, e.g., antivirus), or the ES code might 
be written inefficiently (solution: improve the ES based on 
the specifics of the software being used). Our simulations 
showed that inaccuracies in event timing can affect results, 
which can be detrimental in studies requiring high timing 
precision (e.g., visual masking paradigms). The significance 
of precise timing in experiments has been acknowledged 
before (Plant, 2016), and various solutions to reduce inaccu-
racies have been proposed (Calcagnotto et al., 2021; Kothe 
et al., 2024). Experimental environments vary greatly, and 
so do the patterns of temporal discrepancies across setups 
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(Bridges et al., 2020). Thus, characterizing and reporting the 
differences between environments is critical for comparing 
results across studies.

How to test it?

To evaluate event timing, a "ground truth" measurement, 
representing the actual physical timing of events, is essen-
tial. This requires an external device like a photodiode, 
which detects light changes, to record visual events on the 
screen. By attaching a photodiode to the screen and display-
ing luminance changes (like black versus white) in sync with 
the stimulus presentation, one can measure the start and end 
of each event and calculate its duration. Therefore, to accu-
rately track event timings in an experiment, the experimental 
software (ES) should be modified to include extreme lumi-
nance changes alongside experimental events. The testing 
process involves the following steps:

Modify the ES to allow photodiode‑based testing While 
a photodiode sensor can be placed in any location where 
events appear on the screen, we advocate for a systematic 
approach. In this step, the researchers integrate into the 
ES the simultaneous presentations of the evaluated event 
and a square at one screen corner (or a location not over-
lapping with the stimulus, where the photodiode is easily 
attached). The square should “turn on” (e.g., white; RGB 
255, 255, 255) at each event onset and offset, and should 
be “turned off” (e.g., black; RGB 0, 0, 0) otherwise (or vice 
versa; Fig. 7). This can be achieved by drawing both the test 
square and the visual event to a back buffer before querying 

the EC to display a new frame such that both stimulus and 
test square overlap in time.

Attach the photodiode and run the experiment Once the ES 
displays the test square, place the photodiode in the location 
displaying the square, and run the experiment in its entirety. 
This step will create two files to be compared in the follow-
ing steps: the log file and the photodiode output file, where 
the luminance level was recorded.

Extract event onsets and offsets from the recorded sig‑
nal The next step is to parse the recorded photodiode sig-
nal, which is done by setting a threshold discriminating 
between the two photodiode states, i.e., “on” and “off” (see 
Fig. 8.1.). The threshold binarizes the signal such that val-
ues of “1” indicate samples above threshold (“on”), and 
“0” sample below threshold (“off”). Then, the onset of each 
event can be retrieved by finding the transition from off to 
on samples. This is achieved by computing the discrete 
difference (i.e., the difference between sample n+1 and 
sample n in the signal, see Fig. 8.2 and 7.3) and locating 
the time points where this difference is equal to 1 (see 
Fig. 8.4). Importantly, this step should yield the timestamp 
of the event in temporal units (seconds or milliseconds) 
by indexing the continuous time vector of the recording. 
Alternatively, sample units can be converted to seconds 
by multiplying the sample by the inverse of the sampling 
frequency.

Compare photodiode event timings to log files The initial 
test ensures that the count of events detected by the photodi-
ode aligns with those logged in the file. If the log file content 
has already been confirmed, any mismatch in event numbers 
could indicate issues with the photodiode signal quality. A 
reliable measuring device (photodiode) is required in order 
to be considered “ground truth” and is a prerequisite for 
testing the experiment event timing.

Assuming a reliable photodiode recording, then the pho-
todiode measurements are compared to the log file timings. 
Two values need to be computed: the discrete difference 
between successive events’ timestamps in the (1) photodiode 
( Δphotoi ), and those logged by the (2) EC ( Δlogi):

where tphotoi and tlogi are the timestamps for a given i event 
in the photodiode recording and the experimental output, 
respectively (see Fig. 8.5.a and b). The logging timestamp-
ing inaccuracy is then computed as the difference between 
Δphotoi and Δlogi as

(3)
Δlogi = tlogi+1 − tlogi for i = 1,… , n

Δphotoi = tphotoi+1 − tphotoi for i = 1,… , n

(4)Δi = Δphotoi − Δlogi fori = 1,… , n

Fig. 7  Depiction of visual presentation adjustment to enable test-
ing of timing with a photodiode. A square at the corner of the screen 
should be flashed to white simultaneously with the onset of each 
event of interest and return to black thereafter. In this example, the 
square flashes to white at the onset of each visual stimulus (a colored 
star) as well as at the offset of each visual stimulus. Critically, the 
square should not remain white for the entire duration of the stimulus 
but only for a brief duration at the onset to enable the detection of 
transitions between each event of interest
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Fig. 8  Pipeline to compute the log file timestamping delays using the 
photodiode. The recorded signal must first be parsed (left panel) to 
extract the photodiode timestamps. Then, the extracted timestamps 

can be compared to the log file timestamping by investigating the 
difference between intervals of successive events as recorded by the 
photodiode and log file (right panel)
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Δi constitutes the log file timestamping inaccuracy for every 
single event (see Fig. 8.6), assuming a reliable photodiode.

For a well-calibrated setup, the expected difference 
between Δphotoi and Δlogi is on the order of milliseconds 
or lower (Bridges et al., 2020). The average in Δi should 
approximate zero, with a small standard deviation in the 
order of a few milliseconds. Large discrepancies indicate 
a problem, either with the timing at which events are dis-
played or at which they are logged. Inspecting the difference 
between both timestamp vectors might reveal the cause of 
those discrepancies (missing events, events that are system-
atically displaced in time, etc.).

How to report it?

The average and standard deviation values of Δi across 
events should be reported.

Uncontrolled events

Why test it?

Uncontrolled event timing (e.g., reaction times) can also 
be affected by hardware and software limitations. Reaction 
time effects are often in the range of tens of milliseconds 
(Schlossmacher et al., 2020; van Gaal et al., 2010), making it 
necessary to determine the recording precision. Timestamp-
ing of uncontrolled events can show delays as well as jitters. 
It is therefore crucial to test both and report the results.

How to test it?

A method advocated by Psychtoolbox (and their Keyboard-
LatencyTest method) is to concurrently record the sound 
associated with the actual press of a button. This is done by 
placing a microphone close to the response device used in 
the experiment. This requires a modification of the ES to 
log the microphone-recorded sound into a file. Then, the 
button press onset can be extracted from the audio file and 
compared to the timestamps of responses recorded in the log 
file. The steps are as follows:

Modify the ES to record sound This can be done by adding a 
statement at the beginning of the code to continuously record 
the sound throughout the experiment.

Attach the microphone and run the experiment A con-
tact microphone should be attached close to the keys being 
pressed on the response device. Sharply pressing the keys 
during the test run ensures easy processing in the next step. 

External recording devices (photodiode, microphone) are for 
testing purposes only and can be removed for data collection.

After obtaining the microphone recordings and log files, 
the analysis steps to extract and compare the triggers are the 
same as the procedure described in the sections “Extract 
event onsets and offsets from the recorded signal” and 
“Compare photodiode event timings to log files,” to com-
pute the Δr (Eq. 4, with r denoting responses), respectively.

How to report it?

Like the test for the precision of controlled event timing, the 
average and standard deviation of Δr should be documented. 
In an optimally calibrated experimental setting, the average 
Δr is expected to be near zero, with the standard deviation 
within the range of milliseconds.

Validating the experimental design 
parameters

Why test it?

After the content and timing of events has been validated, 
specific aspects of the experimental design can be evaluated 
(e.g., the duration and balancing of event groups, conditions, 
their sequential presentation). As there are countless choices 
of experimental designs, our aim is not to cover all potential 
designs, but instead to provide the community with a systematic 
method for testing and reporting experimental design aspects.

How to test it?

Below, we focus on two examples validating the experimental 
design with respect to content and timing.

Concerning adhering to the experimental design content, 
the aim is to confirm that those rules that researchers wish to 
enforce in the controlled events (e.g., presented stimuli) are 
indeed implemented (e.g., order of presentation, constraints 
on sequential trials). To test the content requirements, the fol-
lowing steps are proposed:

Know the experiment content requirements Document as 
explicitly as possible what is expected to be enforced, e.g., 
number of stimulus repetitions, randomization scheme, event 
order, stimulus locations, and balancing of event groups. 
Every requirement pertaining to event content in the experi-
mental design should be specified and checked.

Ensure that the relevant information is recorded in the log 
file Ensure the information required to test the previous step 
is stored in the log file.
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Prepare checks to make sure that the log file meets each 
requirement Prepare, ideally, a programmatic script that 
reads the log file and ensures that its content adheres to each 
requirement listed in the first step following the completion 
of the test run. In cases where researchers have pre-made 
sequences including all the information about the flow of 
the events within an experiment, tests can be conducted in 
those pre-made files.

With respect to validating the timings of the experimental 
design, the goal is to assess how closely the actual durations 
of events align with their intended durations. Here, after 
comparing the photodiode output with the log file, research-
ers compare the actual duration of the observed events with 
their planned duration, as specified in the experimental 
design timing scheme.

The first step is to obtain the observed event durations 
from the photodiode recordings:

where OEO stands for the onset and offset of each event i. 
Then, one can compute how much these durations deviate 
from the plan:

where Plannedduration is the planned duration of each event 
i according to the experimental design.

How to report it?

The report for experiments with varying experimental 
design content-based rules should include a compre-
hensive list of design choices. Evaluating how well the 
design meets these requirements involves counting the 
number of events, out of the total tested, that comply with 
each requirement. For nested designs, report the number 
of events for each combination. If relevant, include the 
count of events per condition in each block. Notably, there 
should be no deviations, as any would suggest noncompli-
ance with the study's plan. If content errors are discov-
ered, a reassessment of the experimental software (ES) is 
needed, followed by retesting after corrections are made 
and inaccuracies are corrected.

For event timing, the precision of the planned timings 
should be reported. We advocate reporting the mean and 
standard deviation Δi . The mean is expected to approach 
zero, and the standard deviation to be within the few mil-
liseconds range. Larger values are suggestive of errors or 
hardware issues that might require attention.

(5)Obs Durationi = OEOi+1 − OEOifori = 1,… , n

(6)
Δi = Obs Durationi − Planned durationi fori = 1,… , n

Testing peripheral triggers

Why test it?

So far, we have described tests to benchmark the EC and ES. 
Yet, when the experimental environment contains peripher-
als (a typical case for neuroscience experiments), tests to 
assess the interaction of the peripherals with the EC and ES 
(i.e., triggers) are also necessary. Triggers serve a dual pur-
pose here: (1) they provide temporal markers for events of 
interest on which to focus offline data analysis, and (2) they 
play a pivotal role in maintaining synchrony between the 
EC and the recording system (e.g., electroencephalography 
[EEG], eye-tracking device). This is useful for addressing 
issues related to clock drift, which can be detected and cor-
rected when sending triggers marking events of interest to 
multiple devices (Niso et al., 2022).

The interpretation of the signal recorded by these devices 
depends on the integrity of the trigger transmissions 
(Boudewyn et al., 2023; Luck, 2014), which is the focus 
of the current test. Akin to previous tests, both the content 
and the timing of the triggers representing the controlled 
and uncontrolled events are evaluated. These tests should be 
performed for each peripheral device used in the experiment.

How to test it?

Peripheral trigger content Assuming the log file event 
records are accurate, the congruence between each logged 
event and its corresponding trigger content is assessed. Any 
deviations point to problems with trigger logging or the 
peripheral device, necessitating review and correction.

Peripheral trigger timing Compute the discrete difference 
between successive peripheral trigger timestamps, and com-
pare it against the discrete differences between consecutive 
observed events, as recorded by the photodiode. The differ-
ence between these two arrays provides an estimate of the 
peripheral trigger temporal jitter ( Δi):

Note that this method evaluates temporal jitter but is not 
suited to evaluate delays between events and peripheral trig-
gers. As described by Farzan et al. (2017), delays can be 
measured by recording the photodiode signal on the same 
computer clock as the peripheral of interest. The delay of the 
trigger onset (marked below as Δi too) can then be directly 
compared to the detected photodiode onset as:

(7)
Δi =

(

tphotoi+1 − tphotoi
)

−
(

ttrigi+1 − ttrigi
)

for i = 1,… , n

(8)Δi = tphotoi − ttrigi for i = 1,… , n
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How to report it?

Peripheral trigger content The count of events where the 
trigger content does not align with the log file content should 
be documented, and reported as the count of mismatched 
events over the total count of events.

Peripheral trigger timing The report should contain the 
average and standard deviation of trigger timings. For sys-
tematic delay tests, both the mean and standard deviation 
should be reported.

Standardized report

The framework is summarized in a checklist available on 
protocols.io, alongside a standardized format for reporting 
these results. Both the checklist and the report are in the pro-
tocols.io platform, under this link. Testing the experimental 
environment is crucial, and so is the accompanying detailed 
report of the test results to altogether enhance transparency 
and foster reproducibility and replicability.

Discussion

We present a framework to systematically test and report 
the performance of experimental environments. We aimed 
to minimize financial burden by relying on hardware that 
either most labs already have, or is inexpensive to acquire 
or build (e.g., photodiode and microphone). Our proto-
col enables all tests to be conducted in a single test run, 
making the framework more efficient for researchers and 
preventing additional work due to errors or limitations dis-
covered during the data collection stage. Furthermore, the 
framework also includes guidelines for detailed reporting 
of the parameters and results of each test, as means to 
increase scientific transparency. Such transparency allows 
the scientific community to better evaluate the conclusions 
of the study, as they rely heavily on the proper function-
ing of the experiment. As indicated by the survey results, 
more than half of researchers did not share their test results 
because they did not know where or how to write them; 
the current framework would hopefully help overcome this 
hurdle.

The framework presented herein is designed to be appli-
cable to most recording modalities used in human neuro-
sciences. To test the content and timing of the experimen-
tal events, the only requirement is that the peripherals are 
capable of receiving triggers (which is a standard feature 
in experimental environments containing peripherals in 
event-related designs). To assess event timing accuracy, 

jitters are estimated by comparing the intervals between 
events recorded by the system with those obtained from 
physical measurements: jitter-free peripherals should 
show identical intervals. Although the clocks of differ-
ent devices may drift apart over long periods, comput-
ing the intervals between events occurring in relatively 
short succession overcomes this problem. Notably, this 
method does not account for systematic delays between 
two systems (i.e., if a peripheral device receives the trig-
gers with a systematic delay of 30 ms with respect to the 
physical event). To address this, systematic delays should 
be quantified by recording the physical signals on the same 
computer as the peripheral being used, as described in 
section "Testing peripheral triggers" (Eq. 8). As such, our 
framework offers a comprehensive set of tests for timing 
issues applicable to a wide range of technologies used in 
cognitive neuroscience.

Investing extra time and resources in testing and report-
ing the experimental environment is worthwhile, as simu-
lations show that malfunctions in recording event timing 
and content can significantly impact results. Researchers 
should aim to reduce controllable errors and characterize 
noise in their setups to increase the likelihood of detecting 
real effects and reduce false negatives. The benefits of this 
framework extend beyond individual experiments, enhanc-
ing replication efforts and scientific reliability. Recent rep-
lication challenges in neuroscience and psychology (e.g., 
Kristal et al., 2020) highlight the need for quality assur-
ance in experimental environments, especially when mul-
tiple labs collaborate (e.g., COGITATE: COGITATE Con-
sortium et al., 2023; eegManyLabs: Pavlov et al., 2021; 
The International Brain Laboratory et al., 2021). Without 
strict quality controls, the potential benefits of multi-site 
data collection risk being overshadowed by inter-site vari-
ability, masking real effects observable in single-site data-
sets (e.g., de Vries et al., 2022; Farzan et al., 2017). The 
step-by-step process of conducting the framework on proto 
cols. io enables researchers to thoroughly test their experi-
ments in an effective and relatively non-time-consuming 
manner. A detailed demonstration of the application of 
our framework to an experiment is provided as a Jupyter 
notebook (see Supplemental Material 3).

We believe the short time invested is outweighed by the 
benefits in the long run. We acknowledge that for some, the 
proposed framework and reporting approach might seem 
excessive and may also be met with skepticism, as it may 
increase the burden on the researchers. Yet, as our survey 
shows, most researchers do encounter issues only after 
data collection begins. Addressing errors retrospectively is 
time-consuming, and in extreme cases, undetected issues 
can lead to retractions (e.g., Grave et al., 2021) or flawed 
results. Standardized testing and reporting can identify 
problems early, aiding replication and consistency across 

https://www.protocols.io/blind/70F93740980211EE9C6B0A58A9FEAC02
https://www.protocols.io/blind/70F93740980211EE9C6B0A58A9FEAC02
https://www.protocols.io/blind/70F93740980211EE9C6B0A58A9FEAC02
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studies, including multi-lab projects. We hope this practice 
will gradually become integral to good scientific conduct, 
similar to the adoption of preregistration, which was initially 
met with skepticism (Paret et al., 2022), as it required more 
effort and resources—but over time proved to be highly ben-
eficial (Gentili et al., 2021; Protzko et al., 2023).

Finally, we argue that our proposed framework may not 
be costlier than current testing practices in the field. Our 
survey indicates that researchers already invest time in 
testing their experimental setups and also recognize the 
need for testing before data collection. Yet, these efforts 
often go unreported. Without a standardized test protocol, 
each researcher and lab must devise their own methods, 
with many creating unique tests for each experiment. Our 
framework outlines four key aspects to test in event-based 
experiments: reliability of log file (1) event content and (2) 
event timing, (3) fulfillment of the experimental design, 
and (4) reliability of the peripheral device. These tests are 
broad enough to cover most visual presentation designs, 
needing only minor adjustments for specific cases. With 
careful planning, a single full experimental run, including 
all peripherals, can suffice for comprehensive testing. Most 
steps, except for logging event content, can be automated 
with minimal execution time. While script development 
might initially take time, these scripts are generally reus-
able across studies, offering long-term efficiency.

Thus, we believe that the research community can ben-
efit from these resources. This framework can enhance 
the credibility of research findings, improve research 
efficiency and cost-effectiveness, and, by reporting test 
results, increase the transparency and reproducibility of 
research methods.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13428- 024- 02508-y.
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